Archivo

Posts Tagged ‘Dopamina’

¿Cómo decidimos? El papel de las emociones en la toma de decisiones a nivel neurológico

2 septiembre, 2016 4 comentarios

Las emociones son reacciones fisiológicas de una persona a un estímulo externo y están estrechamente ligadas a la toma de decisiones. Los autores que más han trabajado el papel de las emociones en la toma de decisiones, probablemente sean Antonio Damasio y Joseph LeDoux. Ambos han demostrado cómo no puede haber toma de decisiones sin emociones.

Las funciones ejecutivas

El término funciones ejecutivas se refiere “al modo en el que el cerebro controla todos los procesos cognitivos de alto orden, incluyendo la toma de decisiones y a los inputs sensoriales a los que se les debería prestar atención y a los que no” (Tokuhama-Espinosa, 2011, p.154). Algunos de los estudios sobre las funciones ejecutivas estudian su fisiología, es decir, los mecanismos neuronales y los procesos bioquímicos implicados (Luo, Knoblich, 2007), y las partes del cerebro que están más activas durante este tipo de procesos de pensamiento (Cole, 2006). Gracias a lo que se sabe ahora sobre las funciones ejecutivas se conocen buenas estrategias efectivas, por ejemplo, las analogías para explicar conceptos complejos. Mediante las analogías, la mente transfiere los conceptos que ya conoce a nuevos conocimientos, siendo ésta una de las funciones ejecutivas más complejas (Lipkens, Hayes, 2009). Una de las razones por la cual las analogías funcionan tan bien es porque se aprovechan de los circuitos neuronales normales del cerebro que entran en la amígdala y el hipocampo para tener puntos de referencia antes de actuar (Leech, Mareschal, Cooper, 2008). Por otra parte, también ha de tenerse en cuenta que evaluar de manera regular y frecuente a los alumnos supone darles un feedback correctivo que les ayuda a aprender y a promover su memoria a largo plazo, así como a desarrollar las funciones ejecutivas de razonamiento y análisis (Willis, 2010).

Hasta hace relativamente poco, se creía que la amígdala respondía ante el peligro, el miedo o el enfado, pero estudios neurocientíficos han demostrado que también responde, y con mayor intensidad, ante emociones con impacto positivo en el sujeto.

Las redes neuronales convergen en el córtex prefrontal para regular las funciones cognitivas y ejecutivas, tales como juzgar, organizar, priorizar, valorar los riesgos, hacer análisis críticos, desarrollar conceptos y solucionar conflictos de una manera creativa. Para que se dé el aprendizaje, los inputs sensoriales necesitan pasar a través del sistema de activación reticular (SAR) y ser procesados por el córtex prefrontal.

Los estudios sugieren que cuando nos encontramos en un estado emocional negativo, la amígdala dirige los inputs al cerebro inferior. Mientras que cuando estamos en un estado emocional bueno, la actividad metabólica se reduce en la amígdala y se incrementa en el córtex prefrontal, sugiriendo así que un buen estado de ánimo y no tener sensación de peligro o estrés favorece la conducción de la información a través de la amígdala al córtex prefrontal (Pawlak et al., 2003).

Cómo toma decisiones el cerebro adolescente

Parte de una buena enseñanza implica identificar qué es aquello que motiva a los alumnos para tomar decisiones correctas. Algunos de los estudios más importantes al respecto relacionan el sistema de recompensa, que está regulado en parte por las funciones ejecutivas, con la motivación y la elección adecuada (O’Doherty, Hampton, Kim, 2007). El uso de los sistemas de recompensa adecuados para según qué alumnos, hace que el proceso de enseñanza-aprendizaje sea más efectivo.

La elección, la toma de decisiones, siempre tiene que ver con los conocimientos previos que tenemos. Por ejemplo, cuanto más novato sea aquél que ha de decidir, menos precisas y correctas serán sus decisiones. Por otra parte, algunos estudios hablan de la híper-cognición. Se trata de cuando la mente procesa los pensamientos mucho más rápido de lo normal porque el sujeto en cuestión es experto en ese asunto (Gladwell, 2005). Los estudios sobre la híper-cognición nos pueden ayudar a entender mejor los procesos de una cognición normal.

Asimismo, también es importante conocer el funcionamiento del cerebro y su desarrollo a lo largo de nuestra vida para que esto nos ayude a comprender mejor por qué actuamos y cómo lo hacemos de manera general. Ciertos conocimientos sobre el cerebro adolescente que disponemos hoy en día gracias a las técnicas de neuroimagen nos pueden ayudar a diseñar perspectivas educativas que favorezcan el control del comportamiento en los adolescentes, como es el caso de la toma de decisiones ante situaciones de riesgo. Al respecto, las investigaciones de Ernst (2005), Eshel (2007) y Baird (2005), apuntan en la dirección de que el córtex prefrontal está involucrado en la evaluación de riesgos en situaciones de peligro potencial, y que, comparando los resultados entre jóvenes y adultos, se observa una actividad más reducida en las regiones prefrontales ante estas situaciones. Esto explica lo que ya sabemos de los adolescentes, que perciben el peligro de una manera muy inferior a como lo percibimos de adultos, lo que les hace más vulnerables ante situaciones de riesgo como actitudes peligrosas, inconscientes.

El papel de la dopamina en la toma de decisiones

Los estudios sobre el sistema de recompensa reconocen la importancia que tiene la dopamina en el aprendizaje. Altos niveles en la dopamina se asocian con el placer, mientras que un descenso de la dopamina se asocia a emociones negativas. El núcleo accumbens, una estructura de almacenaje de la dopamina localizada cerca del córtex prefrontal (ver figura 1), libera más dopamina cuando una respuesta, una elección, una decisión, es correcta, y menos dopamina cuando cometemos un error (Salamone, Correa, 2002). El aumento de la dopamina ayuda al aprendizaje porque ante la satisfacción de una respuesta correcta, se refuerza la memorización de la información de la respuesta correcta o del modo en cómo se ha solucionado un problema. De la misma manera, cuando la respuesta es incorrecta o la manera de actuar errónea, el nivel de dopamina baja, dando lugar a sentimientos desagradables, y este mecanismo hace que nuestro cerebro haga esfuerzos por evitar repetir aquello que está mal, alterando los circuitos de la memoria, ya que nos causa desagrado (Kienast et al., 2008). Así, el valor de la dopamina cuando nos hace sentir mal ante una respuesta incorrecta o una forma de actuar errónea tiene que ver con la neuroplasticidad. Estos efectos de la dopamina hacen que puedan desarrollarse cambios en los circuitos cerebrales de tal modo que el cerebro va aprendiendo, por decirlo de algún modo, a actuar de una forma correcta y así evitar los sentimientos desagradables generados por un descenso de la dopamina debido a una elección errónea (Duijvenvoorde et al., 2008). Todo esto hace que la dopamina pueda utilizarse para mejorar el aprendizaje, ya que aumenta la motivación, la memoria y la atención a través de sentimientos placenteros. Pero no hay que olvidar que se necesita un feedback correctivo para que aquello que se ha memorizado se almacene en el lugar adecuado (Galvan, et al., 2006). Figura 1

Investigación de Bechara: Resultados a partir del experimento de la tarea de los juegos de azar de Iowa (TJA)

Una investigación clave referente al papel que las emociones juegan en la toma de decisiones y el aprendizaje es la llevada a cabo por Bechara. La investigación de Bechara se contextualiza en un experimento que se llama tarea de los juegos de azar de Iowa (TJA, Bechara et al., 1994). En este experimento, una participante está sentada en una mesa con un juego de cartas enfrente de ella, que consiste en ir eligiendo cartas de 4 barajas distintas. Con cada carta que elija puede ganar dinero. Lo que no sabe es que hay barajas con premios mayores, pero que también tienen un peligro mayor de pérdidas. Son barajas que se denominan de alto riesgo. Las otras no tienen premios tan cuantiosos pero tampoco tienen el riesgo de perder demasiado dinero. Con este experimento se trata de estudiar cómo aprende una persona las reglas de un juego para calcular y sopesar las decisiones que ha de tomar para alcanzar metas a largo plazo. Los resultados obtenidos a partir de este experimento son los siguientes: las emociones guían el aprendizaje cognitivo; las contribuciones de las emociones al aprendizaje pueden ser tanto conscientes como inconscientes, y moldean la conducta futura; una emoción es más eficaz para aprender cuando es relevante para aquello que se pretende enseñar; el aprendizaje se deteriora si no se tienen en cuenta las emociones. A continuación se explican estos resultados con mayor detalle.

Se comprobó que, aunque la participante elegía inicialmente las cartas al azar, conforme iba observando los resultados, se sentía más atraída por la baraja de alto riesgo que le proporcionaba mayores premios. Pero cuando empezaba a tener también pérdidas importantes, poco a poco iba dejando más de lado las cartas de las barajas de alto riesgo, para ir eligiendo cada vez más cartas de las barajas más seguras. Antes de que la participante pudiera describir las reglas del juego de manera consciente, sus emociones le guiaban en sus actos, hecho que pudo comprobarse por la respuesta galvánica de su piel. Después de jugar un rato más, la participante acumula suficiente información que le permite describir la regla sobre las barajas con las que ha de jugar y cuáles evitar, con lo que podía decirse que ella había aprendido a jugar.

Este experimento muestra la importancia de la emoción en el proceso de aprendizaje, hecho que hace posible que una persona a partir de acumular experiencias, utilice la información adquirida para actuar de manera correcta en acciones futuras (Bechara y Damasio, 1997). Según Immordino-Yang, y Damasio (2007b), la emoción guía el aprendizaje de la misma forma que el timón guía un barco.

Las contribuciones emocionales al aprendizaje pueden ser conscientes o inconscientes, y moldean la conducta futura

Al principio del juego, la participante se sentía atraída por las barajas de alto riesgo que suponían grandes ganancias pero también grandes pérdidas. En este estado, desarrolla una reacción emocional inconsciente de atracción hacia estas barajas de alto riesgo. Pero esto es sólo hasta que empieza a acumular pérdidas importantes. Entonces su reacción cambia y pasa de la excitación a la decepción. Así, su timón emocional guía su conducta y le enseña a ser más reacia a coger cartas de las barajas de alto riesgo, ayudándola a superar la tentación de obtener grandes premios, y le da la energía y el ímpetu necesario para pensar las cosas dos veces. Y esto, tal y como muestra la neurociencia, puede ocurrir a un nivel inconsciente.

La reacción emocional de los alumnos ante los resultados de sus esfuerzos, consciente o inconscientemente, moldean y dan forma a su comportamiento futuro, tanto en el sentido de que les puede incitar a actuar del mismo modo la siguiente vez, como para tener cuidado en situaciones similares.

Una emoción es más eficaz para facilitar el desarrollo del conocimiento cuando es relevante para la tarea que se está llevando a cabo

En el contexto escolar, normalmente las emociones se consideran subordinadas o secundarias respecto al aprendizaje, pero no se consideran como parte integral de los conocimientos que se aprenden. De hecho, ocurre casi lo contrario, y se espera por parte de los alumnos que dejen de lado sus sentimientos y emociones para que se centren en aquello que tienen que aprender. Desde este punto de vista, las emociones se entienden como una fuerza perturbadora, antagónica a una buena cognición, que necesitan ser reguladas y suprimidas con el fin de que los alumnos consigan tener un juicio maduro, ya sea mediante dilemas sociales, dilemas morales (Haidt, 2001), o dilemas cognitivos (Immordino-Yang, Fischer, 2010).

Sin embargo, la neurociencia revela que más que dejar de lado o suprimir las emociones, lo más eficaz para el aprendizaje es incorporarlas para construir el conocimiento cognitivo. De hecho, los estudiantes más eficaces desarrollan intuiciones útiles e importantes que guían sus pensamientos y su toma de decisiones (Immordino-Yang y Damasio, 2007a). Estas intuiciones integran sus reacciones emocionales con sus procesos cognitivos e incorporan lo que han aprendido a partir de la experiencia. Las intuiciones no se generan de manera azarosa e inconsciente, sino que están modeladas y organizadas por la experiencia al llevar a cabo una actividad. Son específicas y relevantes para los contextos particulares en los que han sido aprendidas.

Pero, ¿cómo distinguir entre las emociones relevantes y las irrelevantes para el proceso de enseñanza-aprendizaje? En el mismo experimento de la TJA, se observó que si el jugador estaba demasiado nervioso, con demasiada ansiedad, o estaba con su atención centrada en otra cosa, como el resultado de un partido de fútbol, las emociones no le servían de guía para aprender las reglas del juego que le van a llevar a tomar buenas decisiones. El aprendizaje no ha de buscar simplemente tener en cuenta las emociones, sino que ha de buscar un estado emocional que sea relevante, significativo e informativo para la tarea en cuestión que se está desarrollando. De lo contrario, si las emociones no están relacionadas con la tarea en cuestión, lo que harán será dificultar el aprendizaje.

Sin emoción, el aprendizaje se deteriora

En el mismo escenario del experimento se pone un participante distinto con daños en el córtex prefrontal ventromedial, zona que media entre lo que siente el cuerpo durante una emoción y el aprendizaje de estrategias cognitivas. Esta persona tiene intactas las habilidades cognitivas, resuelve problemas lógicos y da buenos resultados en el test para medir el coeficiente intelectual. La cuestión es si esta persona va a poder aprender cómo jugar, a pesar de que su estrategia cognitiva no pueda estar informada por sus reacciones emocionales inconscientes.

Podría pensarse que esta persona puede calcular mejor sus movimientos porque no está afectado por sus emociones, lo cual le llevaría a jugar mejor que la anterior participante. Pero no resulta ser así. El participante con daños neurológicos empieza a jugar del mismo modo que el jugador típico, seleccionando al azar las cartas de las distintas barajas. Sin embargo, a pesar de que el desarrollo de su respuesta emocional anticipatoria debería enseñarle a identificar el riesgo en las barajas, no recibe información de lo que debería ser su reacción emocional, de manera que no acumula esta información de cara a diseñar futuras elecciones. Mientras que los participantes “normales” van poco a poco decantándose por elegir cartas de las barajas seguras, este último continúa eligiendo las barajas de alto riesgo. Aunque esta persona sea consciente de las pérdidas que sufre y se sienta disgustado y decepcionado por estas pérdidas, no utiliza esta información para guiar su futura estrategia de juego.

La mayoría de los participantes tipo identifican una regla consciente sobre las barajas con las que tienen que jugar y con las que no cuando han sacado alrededor de unas 80 cartas. Pero entre el grupo de participantes con problemas en el córtex prefrontal ventromedial, el juego se desarrolla de manera muy distinta (ver figura 2). Ellos continúan eligiendo de una manera desfavorable, incluso cuando han identificado con éxito una regla consciente sobre el juego. Dicho de otro modo, nunca van a aprender a jugar de una manera satisfactoria. Su conocimiento consciente, sus reacciones emocionales, y sus estrategias cognitivas no están conectados. No pueden aprender de sus experiencias y esto no les permite utilizar lo que aparentemente parecen saber. Figura 2

Por tanto, no se trata sólo del problema que pueden tener personas con esta misma lesión cerebral, sino que el problema se extiende a situaciones de aprendizaje en las que no se sienten emociones relevantes respecto a aquello que se quiere aprender. Si los estudiantes no conectan con lo que aprenden en la escuela, el contenido académico carecerá de sentido para ellos. Aun incluso si pueden y consiguen procesar bien la información que están aprendiendo, esta información no influirá ni en sus decisiones ni en su conducta. Si el currículum no tiene en cuenta el desarrollo de las reacciones emocionales de los alumnos, la integración eficaz de la emoción y la cognición en el aprendizaje no puede garantizarse.

María José Codina Felip

 

Referencias:

  1. Baird, Abigail, et alt. (2005). What were you thinking? A neural signature associated with reasoning in adolescence. Journal of Cognitive Neuroscience, S, 193-194.
  2. Bechara, A., Damásio, A. R., Damásio, H., Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7-15.
  3. Bechara, Antoine, Damasio, Hanna. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275(5304), 1293-1295.
  4. Codina Felip, María José. (2014). Neuroeducación en virtudes cordiales. Una propuesta a partir de la Neuroeducación y la ética discursiva cordial. (Tesis doctoral, Universitat de València, Valencia). Recuperada de http://roderic.uv.es/handle/10550/35898
  5. Codina Felip, María José. (2015). Neuroeducación en virtudes cordiales. Cómo reconciliar lo que decimos con lo que hacemos. Barcelona: Octaedro.
  6. Cole, H. Travers. (2006). The way we think: A primer of education and psychotherapy by reeducation. Whitefish MT: Kessinger Publishing.
  7. Duijvenvoorde, Anna C. K. et alt. (2008). Evaluating the Negative or Valuing the Positive? Neural Mechanisms Supporting Feedback-Based Learning across Development. The Journal of Neuroscience, 28(38), 9495-9503.
  8. Ernst, Marc, et alt. (2005). Triadic model of the neurobiology of motivated behavior in adolescence. Psychological Medicine, 36, 299-312.
  9. Eshel, Neir, et alt. (2007). Neural substrates of choice selection in adults and adolescents: Development of the vetrolateral prefrontal and anterior cingulate cortice. Neuropsychologia, 45, 1270-1279.
  10. Galvan, Adriana, et alt. (2006). Earlier Development of the Accumbens Relative to Orbitofrontal Cortex Might Underlie Risk-Taking Behavior in Adolescents. The Journal of Neuroscience, 26(25), 6885-6892.
  11. Gladwell, Malcolm. (2005). Blink: The power of thinking without thinking. New York: Little Brown.
  12. Haidt, Jonathan. (2001). The emotional dog and its rational tail: A social intuitionist approach to moral judgment. Psychological Review, 108(4), 814-834.
  13. Immordino-Yang, Mary Helen. (2008). The smoke around mirror neurons: Goals as sociocultural and emotional organizers of perception and action in learning. Mind, Brain, and Education, 2(2), 67-73.
  14. Immordino-Yang, Mary Helen, Damasio, Antonio R. (2007a). We feel, therefore we learn: The relevance of affective and social neuroscience to education. Mind, Brain, and Education, 1(1), 3-10.
  15. Immordino-Yang, Mary H., Damasio, Antonio R. (2007b). A tale of two cases: Lessons for education from the study of two boys living with half their brains. Mind, Brain and Education, 1(2), 66-83.
  16. Immordino-Yang, Mary Helen, Faeth, Matthias. (2010). The Role of Emotion and Skilled Intuition in Learning. En Sousa, David A. (ed.), Mind, Brain and Education (pp.69-84). Bloomington, IN: Solution Tree Press.
  17. Immordino-Yang, Mary Helen, Fischer, Kurt W. (2010). Neuroscience bases of learning. En Aukrust, Vibeke Grover (ed.), International Encyclopedia of Education, 3rd Edition, Section on Learning and Cognition. Oxford: Elsevier.
  18. Kienast, Thorsten, Hariri et alt. (2008). Dopamine in amygdala gates limbic processing of aversive stimuli in humans. Nature Neuroscience, 11, 1381–1382.
  19. Leech, Robert, Mareschal, Denis, Cooper, Richard P. (2008). Analogy as relational priming: A developmental and computational perspective on the origins of a complex cognitive skill. Behavioral and Brain Sciences, 31(4), 357-378.
  20. Lipkens, Regina, Hayes, Steven C. (2009). Producing and recognizing analogical relations. Journal of the Experimental Analysis of Behavior, 91(1), 105-126.
  21. Luo, Jing, Knoblich, Guenther. (2007). Studying insight problem solving with neuroscientific methods. Methods, 42(1), 77-86.
  22. O’Doherty, John P., Hampton, Alan, Kim, Hackjin. (2007). Model-based fMRI and its application to reward learning and decisión making. Annals of the New York Academy of Sciences, 1104, 35-53.
  23. Pawlak, Robert, et alt. (2003). Tissue pasminogen activator in the amígdala is critical for stress-induced anxiety-like behavior. Nature Neuroscience, 6(2), 168-174.
  24. Salamone, John D., Correa, Mercè. (2002). Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behavioural Brain Research, 137(1–2), 3-25.
  25. Tokuhama-Espinosa, Tracey. (2011). Mind, Brain, and Education Science. A Comprehensive Guide to the New Brain-Based Teaching. New York: Norton & Company, Inc.
  26. Willis, Judy. (2010). The Current Impact of Neuroscience on Teaching and Learning. En Sousa, David A. (ed.), Mind, Brain and Education (pp.45-68). Bloomington, IN: Solution Tree Press.

 

La motivación escolar: siete etapas clave

18 septiembre, 2014 26 comentarios

¿Qué podemos hacer en la práctica los profesores para motivar al alumno? ¿Cómo conseguir despertar su interés por el aprendizaje (motivación inicial), mantener una implicación regular (motivación de logro) o hacer que el proceso de evaluación sea útil? Al fin y al cabo es como una de esas reacciones  de combustión tan familiares: la chispa suministra la energía necesaria para iniciar el proceso que requiere el suficiente oxígeno para mantenerse. Y aunque la motivación surge del interior y constituye básicamente una respuesta emocional (otra razón más para promover la educación socioemocional en el aula), la figura del profesor resulta esencial como facilitadora del proceso: un profesor que sabe motivar porque está motivado y tiene expectativas positivas sobre sus alumnos. No olvidemos que muchas reacciones de combustión son procesos espontáneos, aunque son tan lentos que requieren el suministro energético externo para iniciarse. ¡Busquemos la chispa y suministremos el oxígeno! La reacción acaba fluyendo con naturalidad.

El cerebro motivado

Como comenta el niño en el video presentado, lo que realmente estimula el aprendizaje no es la ingente cantidad de datos suministrados sino los componentes emocionales asociados al proceso.

Nuestro cerebro está continuamente calculando y haciendo predicciones. Si el resultado de una acción mejora lo esperado se libera dopamina, un neurotransmisor que interviene en diferentes circuitos neurales (ver figura 1). La novedad estimula nuestro cerebro porque las recompensas inesperadas permiten liberar dopamina y se facilita el proceso de aprendizaje. Este sistema dopaminérgico también se activa mucho al realizar actividades sociales. Y es que como dicen Anna Forés y Marta Ligioiz (2009), “no podremos ser efectivos en el aprendizaje sino somos afectivos”.

Sistemas de la dopamina

Siete etapas clave

El reto que nos planteamos los profesores es el de favorecer la motivación intrínseca de los alumnos, esa que nos permite dedicar mucho tiempo a una actividad que nos apasiona, en detrimento de una motivación extrínseca basada en premios y castigos que resulta insuficiente para promover el aprendizaje de conductas más complejas.  A continuación, exponemos siete etapas con algunas sugerencias prácticas que creemos importantes para la motivación inicial, la motivación de logro y los procesos de evaluación, que son imprescindibles para el aprendizaje. Sin olvidar, al final, la importancia que tienen los factores sociales.

1. ¡Qué curioso!

Aunque a los seres humanos nos cuesta reflexionar y sobrepasar determinados estados energéticos que garantizan nuestra supervivencia, somos curiosos por naturaleza. Y suscitar la curiosidad en el aula activará los mecanismos emocionales del alumno que le permitirán focalizar la atención y de esta forma aprender.

En los inicios de clase o de las unidades didácticas correspondientes es imprescindible hacer presentaciones activas y variadas que pueden alternar visualizaciones de videos, planteamientos de preguntas al modo socrático clásico, utilización de anécdotas o ejemplos adecuados, etc.

En la práctica

Figura 2

Pedimos a  los alumnos que observen las balanzas anteriores (ver figura 2) y la disposición de los objetos A y B en las dos situaciones. ¿Cómo se inclinarán las balanzas al retirar los soportes de los brazos? ¿Puedes justificarlo razonando la respuesta? ¿Cómo resolverías problemas semejantes con números? Una forma de despertar la curiosidad del alumno planteando problemas, donde lo importante en la fase inicial no es resolverlos sino comparar diferentes procesos de resolución y qué tipo de dificultades originan (Alonso Tapia, 2005).

 2. ¡Esto me interesa!

Es muy difícil que el alumno se interese por algo si entiende que la tarea de aprendizaje no es útil o relevante. Por ello es muy importante conocer, a través de los procesos de evaluación iniciales, cuáles son sus intereses personales. En este proceso inicial se han de clarificar los objetivos del aprendizaje que han de ser reales (“te lo pido porque lo puedes hacer”) y que no se han de restringir a lo estrictamente académico. Cuando los contenidos que se van a trabajar son contenidos reales cercanos a la vida del alumno y con un enfoque interdisciplinar es más fácil que se motive.

En la práctica

Dos planteamientos que no despiertan el mismo interés:

Hoy  tenéis que leer la teoría de la página 28 sobre las leyes de Newton y haced todos los problemas que aparecen. Os resultará muy útil porque son cuestiones muy importantes y no olvidéis que os lo preguntaré en el próximo examen.

Hoy reflexionaremos sobre situaciones prácticas que seguro os son familiares y que os  pueden ser útiles para calcular fuerzas a las que estamos sometidos. ¿Medimos lo mismo cuando estamos acostados que cuando estamos de pie? ¿Pesamos lo mismo en casa, que en un avión o en el ascensor cuando se acelera hacia arriba?

 3. ¡Acepto el reto!

El alumno puede desmotivarse tanto si la exigencia de la tarea es grande (se siente desbordado y ve que no progresa) como si es pequeña (la rutina no motiva). Es por ello que los objetivos de aprendizaje han de constituir retos adecuados que le permitan mostrar sus fortalezas (que también las tiene, a pesar del tradicional bolígrafo en rojo detector de errores). Evidentemente, para que exista un reto se ha de salir de la zona de confort y en este proceso el papel del profesor como gestor del aprendizaje guiando al alumno y analizando los errores cuando aparezcan es esencial. El alumno puede y debe aprender a controlar el estrés perjudicial (un cierto grado es conveniente para activarnos pero el estrés crónico es dañino) y adquiere confianza cuando el profesor muestra expectativas positivas.

En la práctica

Para que una tarea constituya un reto para el alumno ha de permitirle un inicio exitoso y ello se consigue si la exigencia es la adecuada. Si ocurre esto estará motivado para continuar el trabajo. Por ejemplo, poca utilidad tendrá la de plantear un problema algebraico si las operaciones aritméticas no están consolidadas.

Si se consigue el objetivo inicial, paulatinamente hemos de aumentar la dificultad y complejidad de la tarea e ir encontrando nuevos desafíos. Como ocurre cuando los niños  juegan con videojuegos, serán capaces de pasar al siguiente nivel cuando estén preparados para ello no cuando el profesor lo esté.

 4. ¡Soy el protagonista!

En el proceso de evolución académica y personal del alumno es esencial ir fomentando su autonomía, una autonomía valiente que le permita actuar y responsabilizarse de sus actos. Pero para ello es importante que sea un participante activo del aprendizaje y tenga la posibilidad de elección. Hemos de respetar las preguntas, intervenciones, debates suscitados o análisis entre alumnos sin prisas (no hay excusas con lo de acabar el temario; lo importante no es lo que enseñamos sino lo que aprenden) y permitirles que intervengan en la creación de normas, elección de problemas o estrategias de trabajo. Guiando este proceso, el profesor cede parte del protagonismo al alumno, habla menos y escucha más porque en el aula aprendemos todos. La utilización de estrategias educativas como el aprendizaje basado en proyectos o el basado en la resolución de problemas se nos antoja esencial.

En la práctica

Siguiendo una interpretación parecida al cono del aprendizaje de Dale (ver figura 3, que equivale al original y en el que el creador nunca colocó ningún porcentaje y relativizó las jerarquías), diversos estudios (Tokuhama, 2010) avalan la idea de que los alumnos consolidan mejor la información en la memoria a largo plazo cuando participan de forma activa en el aprendizaje por lo que resulta muy beneficioso que los alumnos se enseñen entre ellos, realicen experimentos o discutan los contenidos antes que observar al profesor realizar los experimentos, ver un video  o escuchar pasivamente sus explicaciones.

256px-Cono_de_la_Experiencia.svg5. ¡Progreso!

La memoria es esencial para el aprendizaje (de hecho son dos procesos indisolubles) y lo que ocurre es que hay que hacer un uso adecuado de ella en cada tarea. Para que el progreso del alumno sea real se ha de poder integrar la nueva información con la ya conocida. Y para optimizar el aprendizaje, el cerebro necesita repetir y reforzar todo aquello que tiene que asimilar, automatizando así toda una serie de procesos que liberan espacio en la memoria de trabajo y nos permiten reflexionar mejor. En este proceso de crecimiento continuo es esencial elogiar al alumno por su esfuerzo y no por su capacidad (y se elogia a todos, no solo a unos pocos como se ha hecho tradicionalmente desmotivando muchas veces al resto) porque así es más fácil ser perseverante. Junto a ello, la existencia de un clima emocional positivo en el aula en el que se promueven también actividades variadas como salidas, conferencias o intercambios entre alumnos también ayuda.

En la práctica

Los estudios demuestran que la práctica sistemática del recuerdo constituye un método de aprendizaje más eficaz que las sesiones de estudio convencionales (Morgado, 2014). Evidentemente no todo se puede practicar de forma intensa pero siempre es conveniente que determinados procesos mentales se automaticen para poder profundizar en los conocimientos. Por ejemplo, no saber de memoria las tablas de multiplicar puede perjudicar la resolución de problemas aritméticos o no conocer las reglas ortográficas impide una escritura adecuada.  El espaciar la práctica en el tiempo y variarla con actividades diversas evita el aburrimiento (Willingham, 2011).

Por otra parte, cuando se elogia al alumno por su esfuerzo y no por su capacidad se mejora su motivación de logro y su perseverancia para afrontar tareas de mayor complejidad. En este sentido, se nos antoja imprescindible comenzar un curso explicando cómo funciona el cerebro humano. Podemos utilizar ejemplos reales sobre plasticidad cerebral (ver figura 4), neurogénesis o sobre la variabilidad del cociente intelectual.

Cerebro disléxico mejorado6. ¡Esto vale la pena!

La satisfacción que produce al alumno el ver que va progresando y aprendiendo debe ser confirmada por la aplicación de criterios de evaluación claros (la utilización de rúbricas es muy conveniente) que tienen en cuenta su esfuerzo, su progreso y que no se limitan al nivel de conocimientos adquirido. Se ha de fomentar la autoevaluación y enseñar al alumno los procesos asociados a la metacognición. En este proceso en el que existe el feedback, la utilización del portafolios y de una evaluación formativa (en lugar de la sumativa) resultan imprescindibles.

En la práctica

El desarrollo de habilidades metacognitivas resulta imprescindible para el aprendizaje. Algunas estrategias para desarrollarlas consisten en identificar, a través de rutinas de pensamiento, qué sabe y qué no se sabe el alumno al iniciar actividades de investigación, expresar cómo se reflexiona y qué estrategias se utilizan al resolver problemas y utilizar el portafolio para reflejarlo o realizar procesos de autoevaluación (Tokuhama, 2014). Sin olvidar los beneficios que conlleva la implementación de programas de mindfulness en el aula.

 7. ¡Soy útil!

Los seres humanos somos seres sociales porque nuestro cerebro se desarrolla en contacto con otros cerebros por lo que las interacciones en el aula entre alumnos y entre alumno y profesor son esenciales. El buen profesor motiva porque está motivado, transmite entusiasmo, conoce su materia, hace un uso adecuado del humor y está interesado en sus alumnos. Como cualquier persona, el alumno tiene una necesidad de ser reconocido (el adolescente más) y se lo hemos de manifestar con naturalidad, transmitiendo que el error forma parte del proceso de aprendizaje. En plena consonancia con el desarrollo del cerebro social está el fomentar el trabajo cooperativo en el aula, la utilización de estrategias proactivas que prevengan determinados problemas o la realización de tutorías tanto individuales como en grupo. Los alumnos lo agradecerán mucho.

En la práctica

El trabajo cooperativo en el aula mediante grupos reducidos permite optimizar el aprendizaje tanto a nivel individual como colectivo cuando se interactúa de forma adecuada entre compañeros (ver figura 5), se asume una responsabilidad individual y se crea un clima de confianza y comunicación fluida. Por ejemplo, se puede analizar un texto de Filosofía en el que cada alumno del grupo lee un párrafo e intenta interpretarlo. En caso necesario, ayudarán los otros compañeros o el profesor si fuera necesario. En el caso de los proyectos cooperativos es importante que existan las preguntas pertinentes que permitan evaluar la aportación de uno mismo y la de los demás.

Distribución de mesas

Conclusiones finales

La motivación es el motor que nos permite actuar y en el entorno escolar es absolutamente imprescindible fomentarla y educarla. No se pueden justificar los resultados académicos negativos de los alumnos achacándolos siempre a la de falta de esfuerzo o a la desmotivación porque la voluntad es un recurso limitado y como dice Ian Gilbert (2005), “No me he encontrado aún con ningún niño que no esté motivado, sino que a veces ocurre simplemente que no están motivados para hacer lo que deseamos que hagan y cuando queremos que lo hagan”. Los profesores podemos utilizar las estrategias educativas adecuadas para enseñar y motivar a los alumnos responsabilizándonos de su aprendizaje. Hagamos que quieran y que hagan pero sin olvidar que la motivación requiere tiempo.

Jesús C. Guillén

Bibliografía:

  1. Alonso Tapia, J. (2005). Motivar en la escuela, motivar en la familia. Morata.
  2. Forés, Anna, Ligioiz, Marta (2009). Descubrir la neurodidáctica. UOC.
  3. Gilbert, Ian (2005). Motivar para aprender en el aula. Las siete claves de la motivación escolar. Paidós.
  4. Jensen, Eric y Snider, Carol (2013). Turnaround tools for the teenage brain. Jossey-Bass.
  5. Marina, José Antonio (2011). Los secretos de la motivación. Ariel.
  6. Sousa, David A. (2011). How the brain learns. Corwin.
  7. Spitzer, Manfred (2005). Aprendizaje: neurociencia y la escuela de la vida. Omega.
  8. Temple, E. et al. (2003): “Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI”, PNAS 100.
  9. Tokuhama-Espinosa, Tracey (2010). The new science of teaching and learning: Using the best of mind, brain, and education science in the classroom. Columbia University Teachers College Press.
  10. Tokuhama-Espinosa, Tracey (2014). Making classrooms better. 50 practical applications of mind, brain and education science. Norton.
  11. Vaello, Joan (2011). Cómo dar clase a los que no quieren. Graó.
  12. Willingham, Daniel (2011). ¿Por qué a los niños no les gusta ir a la escuela? Graó.

Neuroplasticidad, un nuevo paradigma para la educación

La ciencia está en continua evolución. Hasta hace pocos años se creía que nuestro cerebro era estático e inmutable, que nacíamos con un número determinado de neuronas que iban perdiéndose con el paso del tiempo y que nuestros genes heredados condicionaban nuestra inteligencia. Actualmente, debido al progreso de los experimentos realizados por la moderna neurociencia, sabemos que existe la neuroplasticidad, una propiedad del sistema nervioso que le permite adaptarse continuamente a las experiencias vitales1. Nuestro cerebro es extraordinariamente plástico, pudiéndose adaptar su actividad y cambiar su estructura de forma significativa a lo largo de la vida. La experiencia modifica nuestro cerebro continuamente, fortaleciendo o debilitando las sinapsis que conectan las neuronas. Este proceso se conoce como aprendizaje2. Independientemente del declive natural que conlleva la vejez, el aprendizaje se puede producir a cualquier edad, somos capaces de generar nuevas neuronas3 y nuestra inteligencia no es fija ni inmutable.

Desde la perspectiva educativa, el concepto de plasticidad cerebral constituye una puerta abierta a la esperanza porque implica que todos los alumnos pueden mejorar. Aunque existan condicionamientos genéticos, sabemos que el talento se construye con esfuerzo y una práctica continua. Y nuestra responsabilidad como docentes radica en guiar y acompañar a los alumnos en este proceso de aprendizaje y crecimiento continuo, no sólo para la escuela sino, también y sobre todo, para la vida.

.

El cerebro, un órgano plástico

Las primeras evidencias sobre la neuroplasticidad provenían de estudios realizados con animales, personas ciegas o sordas de nacimiento y con otras que habían padecido lesiones cerebrales. Aunque estas investigaciones resultaron fundamentales en el proceso de comprensión de la plasticidad del sistema nervioso, se objetaba a menudo que estos experimentos correspondían a cerebros de animales o de personas con características excepcionales que podían diferir del comportamiento habitual.

Como son muy conocidos el experimento de Eleanor Maguire con los taxistas de Londres4 (aumentaba su hipocampo al tener que memorizar un complejo callejero) o el de Thomas Elbert con los violinistas5 (se incrementaba la región de la corteza cerebral  que controla los dedos de la mano izquierda) nos centraremos en dos estudios del científico español Álvaro Pascual-Leone que consideramos muy originales y significativos6.

En el primero, se enseñó a la mitad de un grupo de voluntarios a tocar una pieza de piano con cinco dedos. Se observó que el entrenamiento continuo conllevó un aumento en la región correspondiente a la corteza motora que era responsable de mover esos dedos. Aunque ese resultado constituía una muestra clara de neuroplasticidad, no era novedoso porque otros experimentos habían llegado a conclusiones similares. Lo verdaderamente interesante resultó al analizar las imágenes cerebrales de la otra mitad de voluntarios a los que se puso a imaginar que tocaban la pieza. Se observó que la simulación mental de los movimientos activaba las regiones de la corteza motora que se requerían para la ejecución de los movimientos reales. Sorprendentemente, la práctica mental era suficiente para promover la neuroplasticidad7.

El segundo estudio de Pascual-Leone que consideramos muy relevante es el llamado “experimento de la venda”. Durante cinco días, a un grupo de voluntarios sanos se les vendó los ojos. Durante ese período de tiempo se les mantuvo ocupados leyendo Braille (hay que desplazar los dedos sobre puntos impresos) y realizando tareas auditivas que consistían en diferenciar pares de tonos que escuchaban con unos auriculares. El análisis de los escáneres cerebrales mediante resonancia magnética funcional reveló que la corteza visual de los participantes, tras cinco días, modificó su función y pasó a procesar las señales auditivas y táctiles aumentando así su actividad. Después de retirar las vendas de los ojos, sólo debían transcurrir unas horas para que la actividad se redujera (ver figura 1).

Figura 1. Comparación de la activación del surco calcarino (V1) que se encuentra en el lóbulo occipital. A la izquierda, la imagen tras cinco días de privación visual y, a la derecha, una vez retirada la venda6.

.

Desde el punto de vista educativo, resulta trascendental la demostración de que el mero pensamiento provoca la neuroplasticidad. La  plasticidad cerebral permite, a través de un entrenamiento mental adecuado, que nuestro perfil emocional pueda cambiar y afectar de forma positiva a nuestra vida. Los docentes hemos de generar creencias adecuadas en nuestros alumnos que les permitan afrontar las dificultades como retos.

Neuroplasticidad y atención

La atención constituye uno de los factores críticos en el proceso de aprendizaje. Resulta un mecanismo imprescindible porque la capacidad de nuestro cerebro para procesar la información sensorial entrante es limitada.

El equipo de investigación de Michael Merzenich realizó dos experimentos muy importantes que demostraron la plasticidad del córtex cerebral de los monos: uno el llamado experimento del “disco giratorio”8 y otro el de las vibraciones9. En ambos, se observó que el aprendizaje de una tarea concreta, en la que los monos utilizaban los tres dedos interiores de la mano, conllevaba un aumento de la región somatosensorial cerebral asociada a estos dedos10 (ver figura 2).

 Figura 2. Representación en la que se muestra el aumento de la región cortical que corresponde al dedo central después del período de aprendizaje de la tarea8.

.

En el segundo de los experimentos citados, se entrenó a un grupo de monos (dos horas al día, los siete días de la semana) para que pudieran distinguir con tres de sus dedos la frecuencia de oscilación de unas láminas vibratorias. Los monos, al cabo de un tiempo,  ya eran capaces de detectar diferencias entre frecuencias. Los investigadores observaron que, como consecuencia del aprendizaje de esa tarea, las áreas sensoriales de la corteza cerebral correspondientes a los dedos de la mano utilizada aumentaron. Aunque este experimento es relevante como indicador de la neuroplasticidad, desde la perspectiva educativa nos interesa una variante realizada11. Se repitió el experimento anterior con la novedad de que si, inicialmente se les dio zumo a los monos cada vez que acertaban para facilitar el aprendizaje de la tarea, en el nuevo experimento se les permitió beber todo el zumo que deseaban. El resultado fue que, en esta nueva situación, los monos no eran capaces de aprender la tarea y sus representaciones somatosensoriales no cambiaban. Al no existir la atención selectiva en la tarea desarrollada, no se daba la activación neuronal de las correspondientes regiones cerebrales que sí se activaban en el experimento inicial.

Este experimento, aparte de relacionar los procesos atencionales con la neuroplasticidad, enlaza con los objetivos educativos. La atención sobre lo que se debe aprender requiere esfuerzo continuo, motivación para ser receptivo y contar con las emociones adecuadas. En ese orden, la dedicación constante requiere autocontrol, lo novedoso y lo relevante facilita nuestra motivación y en un estado relajado nuestra atención (también la memoria) se encuentra en una situación más beneficiosa para facilitar el aprendizaje.

La neuroplasticidad como mecanismo de compensación: la dislexia

La propiedad de la neuroplasticidad tiene una relación directa con la mejora en determinados trastornos del aprendizaje, siendo uno de los más conocidos la dislexia. Sabemos que diversas áreas cerebrales intervienen en la formación del lenguaje, por lo que su desarrollo requiere muchos años. La lectura, por ejemplo, necesita una óptima conexión entre estas regiones cerebrales y el niño, para que pueda leer con corrección, necesita una comprensión del lenguaje adecuada. En la dislexia, el principal impedimento para leer está relacionado con el habla y la memoria verbal. Para leer necesitamos captar la correspondencia existente entre los sonidos del lenguaje (fonemas) y los símbolos visuales que utilizamos para representarlo (grafemas) y es por ello que los niños disléxicos sufren trastornos estructurales en el procesamiento de sonidos y en algunas tareas visuales.

Diversos estudios han demostrado la importancia de un entrenamiento intensivo para niños disléxicos12. Utilizando programas informáticos, se alargan artificialmente sonidos de consonantes  para poder diferenciarlas. En pocas semanas, los niños procesan mejor los sonidos de palabras mostrando una clara integración auditivo-visual. Y es que, tras el entrenamiento, en las imágenes de resonancia magnética funcional se observan  incrementos en la activación de regiones cerebrales que eran previamente  hipofuncionales, como la corteza temporo-parietal (ver figura 3) que interviene en el procesamiento fonológico.

Figura 3. En las imágenes superiores (A) se compara la activación de regiones que intervienen en el procesamiento fonológico en niños normales y en niños disléxicos. En las inferiores (B) se muestra la mayor activación de estas regiones en los niños disléxicos después del período de entrenamiento13.

.

La neuroplasticidad permite fortalecer las regiones cerebrales implicadas en el procesamiento del habla y así se pueden mejorar dificultades asociadas a la dislexia. Además, se ha comprobado que este tipo de entrenamientos mejoran la comprensión del lenguaje, la memoria y la lectura.

Estos resultados muestran la importancia del tiempo dedicado a la comprensión del lenguaje oral y su relación directa con el aprendizaje de la lectura. Evidentemente se trata de ejercicios repetitivos que han de ser a la vez motivadores porque de lo contrario no se pueden escuchar atentamente los inputs sonoros. Además, es importante que se utilice una gran variedad de estímulos verbales que permitan una mayor actividad del hemisferio izquierdo que funciona peor en los niños disléxicos.

Aunque este tipo de aprendizajes compensatorios no puedan erradicar completamente los trastornos (no todos los neurocientíficos están de acuerdo), sí que garantizan grandes mejoras si existe el deseo de aprender, junto a la dirección adecuada del proceso de aprendizaje.

Dopamina y plasticidad

La dopamina es un neurotransmisor con importantes implicaciones educativas porque interviene en procesos de gratificación y motivación que son fundamentales en el aprendizaje. Se ha demostrado que el pensamiento positivo está asociado al córtex prefrontal del hemisferio izquierdo y que, en esta situación, se libera dopamina que activa los circuitos de recompensa. En niños con TDAH se ha observado una reducción en el tamaño del núcleo accumbens (ver figura 4), una región del sistema límbico relacionada con los circuitos dopaminérgicos, mostrando la influencia de los estados de ánimo en la atención14.

Figura 4

En un estudio realizado con ratas15, se demostró que la estimulación directa del área tegmental ventral, constituida por vías de dopamina, cambió las representaciones corticales de los sonidos escuchados. Si las ratas sólo escuchaban los sonidos sin ninguna estimulación eléctrica no se producía ninguna variación. Tanto en el cerebro de las ratas como en el nuestro existe una región cortical en la que hay neuronas que pueden representar distintas frecuencias que no conllevan preferencias de representación. La importancia de este experimento radica en el hecho de que la neuroplasticidad se daba en el córtex auditivo al estimular el circuito de gratificación de la dopamina, es decir, el aprendizaje de la tarea sonora estaba ligado a la activación de un circuito en el que interviene un neurotransmisor que sabemos cómo afecta al aprendizaje.

En la práctica educativa, los docentes hemos de saber activar este sistema de gratificación de la dopamina con gestos, miradas o conductas agradables. Nuestro lenguaje no verbal16 desempeña un papel importante en la transmisión de componentes emocionales. Además, como ya hemos comentado anteriormente, lo novedoso motiva y facilita el aprendizaje.

Conclusiones finales

La neurociencia ha demostrado la influencia de los factores ambientales, incluida la educación, sobre la estructura y función del cerebro. La neuroplasticidad constituye un nuevo paradigma educativo porque revela que el entrenamiento mental puede modificar el cerebro que no es fijo ni inmutable, sino maleable.

Somos la única especie que utiliza la plasticidad para perfeccionar y evolucionar el cerebro por lo que eso es lo que nos hace diferentes y singulares. Pero, además, cada individuo de nuestra especie es único e imprevisible y participa de su propia evolución debido a la influencia de las experiencias vividas.

Nuestro perfil emocional, que se forma mediante una serie de circuitos neuronales durante los primeros años de vida, puede modificarse como consecuencia de experiencias casuales o a través del esfuerzo consciente. Y nuestros propios pensamientos son capaces de generar la neuroplasticidad y condicionar nuestro comportamiento y aprendizaje.

En el contexto educativo, la plasticidad del cerebro implica que todos podemos mejorar. Y los docentes tenemos la responsabilidad de conocer cómo funciona ese sistema biológico complejo llamado cerebro del que surge todo lo relacionado con la conducta y el pensamiento humano.

Estudios recientes han demostrado que la meditación modifica patrones de actividad cerebral y puede fortalecer la empatía, el optimismo o la sensación de bienestar17.

Linda Lantieri ha desarrollado proyectos en escuelas americanas, con resultados satisfactorios, en los que se utiliza la relajación corporal y la concentración para mejorar la atención de los niños. Todo ello fomentando la empatía y el trabajo cooperativo entre alumnos en entornos académicos alejados del estrés habitual. Y los resultados demuestran que este tipo de aprendizaje social y emocional resulta muy beneficioso18. Los estudiantes mejoran la atención, son menos agresivos y manifiestan más emociones positivas. Un aprendizaje no sólo académico, sino también para la vida.

La pedagogía efectiva ha de aprovechar la plasticidad cerebral. El cambio es posible.

Jesús C. Guillén

.

1 La neuroplasticidad constituye un concepto amplio  que se puede concretar según  los diferentes niveles del sistema nervioso: neuronas, sinapsis o mapas corticales. Antes se creía que la neuroplasticidad se restringía sólo al período del desarrollo del sistema nervioso.

2 El aprendizaje a nivel neuronal (se conoce como aprendizaje hebbiano) consiste en que las neuronas pueden instalar nuevo cableado en función de la experiencia. Se explica a partir de un mecanismo conocido como potenciación a largo plazo que conlleva un incremento duradero en la eficiencia sináptica como resultado de la actividad neuronal entrante. La conexión entre dos neuronas aumenta siempre de intensidad cuando la activación es simultánea. Se cree que el fortalecimiento de las sinapsis conllevaría el aprendizaje y la memoria.

3 Más información sobre la neurogénesis:

https://escuelaconcerebro.wordpress.com/2011/12/16/generacion-de-neuronas-a-partir-de-otras-celulas/

https://escuelaconcerebro.wordpress.com/2011/12/17/mas-sobre-neurogenesis-relacion-entre-el-declive-cerebral-y-algunas-moleculas-de-la-sangre/

4 Maguire, E. A. et al. (2000): “Navigation-related structural change in the hippocampi of taxi drivers”, PNAS 97.

5 Elbert, T. et al.(1995): “Increased cortical representation of the fingers of the left hand in string players”, Science 270.

6 El análisis completo de los dos experimentos de A. Pascual-Leone se puede encontrar en:

 Pascual-Leone, A.; Amedi, A.; Fregni, F.; Merabet, M.L.(2005): “The plastic human brain cortex”, Annu. Rev. Neuroscience 28.

7   Que el mero pensamiento promueva la neuroplasticidad justifica la escritura del último libro del reconocido psicólogo Richard J. Davidson, en el que explica sus investigaciones sobre el poder del entrenamiento mental para modificar nuestro perfil emocional. Según identifica Davidson a partir de sus estudios, en el perfil emocional existen seis dimensiones: resiliencia, actitud, intuición social, autoconciencia, sensibilidad al contexto y atención.

Davidson, Richard, Begley, Sharon, El perfil emocional de tu cerebro, Destino, 2012.

8 Jenkins W. M. et al. (1990): “Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation”, Journal of Neurophysiology 63.

9 Recanzone, G.H. et al. (1992): “Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency-discrimination task”, Journal of Neurophysiology 67.

10  Más información sobre la representación del cuerpo en la corteza somatosensorial:

https://escuelaconcerebro.wordpress.com/2012/06/03/la-escritura-con-la-mano-izquierda/

11 Manfred Spitzer lo explica en su sensacional libro Aprendizaje: neurociencia y la escuela de la vida, Omega, 2005.

12 Tallal, P. et al. (1996): “Language comprehension in language-learning impaired children improved with acoustally modified speech”, Science 271.

13 Temple, E. et al. (2003): “Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI”, PNAS 100.

14 Para más información:

https://escuelaconcerebro.wordpress.com/2012/03/04/la-atencion-un-recurso-limitado/

15 Bao, S.; Chan, V.T.; Merzenich M.M.(2001): “Cortical remodeling induced by activity of ventral tegmental dopamine neurons”, Nature 412.

16 Para más información sobre la importancia del lenguaje no verbal:

https://escuelaconcerebro.wordpress.com/2012/02/16/comunicacion-no-verbal-y-evaluacion-del-profesorado-segun-ambady-y-rosenthal/

17 Lutz, A. et al. (2009): “Mental training enhances attentional stability: neural and behavioral evidence”, Journal of Neuroscience 29.

Para más información sobre el entrenamiento mental:

https://escuelaconcerebro.wordpress.com/2012/02/17/gimnasia-mental-4/

18 Para más información:

 http://www.innerresilience-tidescenter.org/

.

Para saber más:

-Conferencia de Michael Merzenich sobre el aprovechamiento de la plasticidad cerebral para mejorar destrezas y recuperar funciones perdidas:

http://www.ted.com/talks/lang/es/michael_merzenich_on_the_elastic_brain.html

-Spitzer, Manfred, Aprendizaje: neurociencia y la escuela de la vida, Omega, 2005.

-Blakemore, Sarah-Jayne, Frith, Uta, Cómo aprende el cerebro, las claves para la educación, Ariel, 2011.

-Davidson, Richard, Begley, Sharon, El perfil emocional de tu cerebro, Destino, 2012.

-Kandel, Eric, En busca de la memoria, Katz, 2007.

-Ramachandran, V. S., Lo que el cerebro nos dice: los misterios de la mente humana al descubierto, Paidós, 2012.

-Ansermet, François, Magistretti, Pierre, A cada cual su cerebro: Plasticidad neuronal e inconsciente, Katz, 2006.

-Ortiz, Tomás, Neurociencia y educación, Alianza Editorial, 2009.´

-Marina, José Antonio, El cerebro infantil: la gran oportunidad, Ariel, 2011

-Jensen, Eric, Cerebro y aprendizaje: competencias e implicaciones educativas, Narcea, 2004.

-Lantieri, Linda, Inteligencia emocional infantil y juvenil, Aguilar, 2009.

https://escuelaconcerebro.wordpress.com/2012/12/27/neuroeducacion-estrategias-basadas-en-el-funcionamiento-del-cerebro/

¿Cómo funcionan nuestras memorias y emociones? (Documental de la Universidad de Navarra)

Os presentamos un vídeo divulgativo en el que se explica el funcionamiento de las distintas clases de memoria que se ha identificado en el cerebro humano y su relación con las emociones. También se explica la influencia del alcohol y las drogas sobre el cerebro adolescente.

Un parásito capaz de alterar directamente la química cerebral de mamíferos

Una investigación revela que la infección por el parásito Toxoplasma gondii es capaz, cuando alcanza al cerebro, de afectar directamente a la producción de dopamina, un mensajero químico crucial en el cerebro. Un tercio de la población humana está infectada por el Toxoplasma gondii, pero la mayoría no lo sabe.

El estudio, realizado por el equipo del Dr. Glenn McConkey de la Facultad de Ciencias Biológicas en la Universidad de Leeds, Reino Unido, se ha limitado a ratones. McConkey cree que los resultados podrían a la postre dar nuevos indicios sobre el tratamiento de trastornos neurológicos humanos que están relacionados con la dopamina, como la esquizofrenia, el Trastorno por Déficit de Atención e Hiperactividad y la enfermedad de Parkinson.

Para leer la noticia completa pulsar aquí

David Fernández

Neurodidáctica: Una nueva vía educativa

El aprendizaje ha de tener en cuenta el desarrollo del cerebro. Este es uno de los pilares fundamentales de la neurodidáctica. En consecuencia,  la educación  ha de ir de la mano del desarrollo cerebral de nuestros alumnos y así obtener el máximo potencial cerebral de cada uno de ellos.

La nueva educación ha de facilitar los estímulos correctos en función del desarrollo cerebral. Con ello se  facilita el aprendizaje. Para llevar a cabo este principio se ha de trabajar en la potencialidad de cada alumno, identificando sus capacidades, destacando aquellas acciones que puede hacer mejor, y de este modo potenciarlo, por lo que hay que romper con el sistema tradicional de aprendizaje.

En el siguiente vídeo se pueden seguir los comentarios de Anna Forés, experta en neurodidáctica.

David Fernández

La base neuronal de los videojuegos

Los adolescentes que pasan delante de los videojuegos muchas horas tienen estructuras y niveles de actividad diferentes en zonas del cerebro ligadas a la recompensa y la dopamina, lo que sugiere que puede llegar a ser una adicción.

Esta es la conclusión a la que han llegado los científicos que han elaborado el estudio titulado «The neural basis of video gaming«, publicado por la revista Translational Psychiatry.

Este estudio se ha centrado en 150 adolescentes de 14 años y los resultados son sorprendentes por la modificación de las estructuras cerebrales en regiones donde la dopamina actua. Estas conclusiones abren el camino a futuras acciones terapéuticas en relación a la adicción de las consolas.

David Fernández

Categorías: Neurociencia Etiquetas: , ,