Archivo

Archivo del autor

Una nueva educación es necesaria y posible

La emoción es el vehículo que transporta las palabras y su significado.

Francisco Mora

El pasado fin de semana tuvimos la fortuna de asistir al I Congreso Internacional de Neuroeducación y os queremos agradecer que hicierais posible tal evento. Durante dos días repletos de emociones positivas, pudimos compartir nuevas miradas educativas con investigadores, profesores, estudiantes, familias…, en definitiva, con personas entusiastas que creen que una nueva educación es necesaria y que la hacen posible día tras día. Y en la fase final del encuentro, la extraordinaria neurocientífica y divulgadora Marta Portero nos resumió algunas de las ideas clave que se analizaron en las ponencias –muchas de esas ideas también se abordaron en las comunicaciones– y que tienen grandes implicaciones educativas. A continuación, comentamos de forma breve algunas de estas cuestiones y las acompañamos con los fantásticos resúmenes visuales realizados, en vivo y en directo, por la magnífica Lucía López. Y no están todos los que son.

Figura 1

1. Las experiencias cambian nuestro cerebro durante toda la vida
Nuestro sistema nervioso tiene la capacidad de modificarse y ajustarse a los cambios. Esta propiedad intrínseca del sistema nervioso, conocida como neuroplasticidad, y que permite formar nuevas conexiones neuronales y fortalecer o debilitar otras ya existentes, es la responsable de que el cerebro esté remodelándose y adaptándose continuamente a partir de las experiencias que vivimos, y de que podamos aprender durante toda la vida. En este proceso resulta imprescindible ir vinculando la nueva información con los conocimientos previos del alumnado para ir consolidando las memorias (algo especialmente relevante durante el sueño; Groch, 2017) y fomentar la necesaria mentalidad de crecimiento, tanto en la escuela como en la familia. Qué perjudiciales resultan las etiquetas o estereotipos que chocan con lo que sabemos hoy día sobre nuestro cerebro plástico y que dañan gravemente las creencias del estudiante sobre su propia capacidad.

Figura 2

2. El cerebro no finaliza su maduración hasta pasada la adolescencia
Los estudios con neuroimágenes de los últimos años han revelado que durante la adolescencia se produce una gran reorganización de las redes neurales, lo cual conduce a un funcionamiento cerebral diferente del que se da en la infancia o en la vida adulta. El cerebro del adolescente no es el cerebro envejecido de un niño ni el de un adulto en proceso de formación; simplemente, opera de forma singular. Conocer el desarrollo del cerebro en esta etapa de la vida nos permitirá distinguir mejor las conductas típicas de la adolescencia de las asociadas a muchas enfermedades mentales que aparecen a estas edades, como el trastorno de ansiedad, la depresión o la esquizofrenia. Y este periodo, en el cual el cerebro es tremendamente plástico, constituye una oportunidad fantástica para el aprendizaje, el desarrollo de la creatividad y el crecimiento personal del alumnado (Blakemore, 2018). Desde la perspectiva educativa más no es mejor. Y la genética condiciona, no determina. La educación debería potenciar nuestras características genéticas y ayudarnos a aprender con todo nuestro potencial.

Figura 3

3. Aprendemos todos de manera diferente
Como cada una de nuestras experiencias tiene un impacto singular, la plasticidad hace que nos podamos liberar de los determinismos genéticos y que cada cerebro sea único. Además, el ritmo de aprendizaje y de maduración cerebral es singular, más allá de ciertos patrones de activación similares (Giedd et al., 2015). En la práctica, constituye una auténtica necesidad educativa y social que puedan aprender juntos estudiantes totalmente diferentes, porque eso es lo que ocurre en la vida cotidiana.
En las aulas que intentan atender la diversidad se crean nuevos espacios de aprendizaje, se priorizan los ritmos de aprendizaje de los estudiantes por encima de los calendarios escolares, se coopera —a todos los niveles—, se aprende de forma activa y se fomenta la autonomía del alumnado al hacer que se responsabilice de su trabajo. No es una clase convencional que incorpora alumnos con necesidades específicas o con discapacidades, sino una clase en la que conviven y aprenden personas diferentes, sean cuales sean sus diferencias, sin excepción. Cuando se acepta la diversidad en el aula, se reconocen y aprovechan los puntos en común y las diferencias y se asume con naturalidad que podemos desenvolvernos bien en algunas materias y no tanto en otras.

Figura 4

4. Sin atención no hay aprendizaje
La atención nos permite seleccionar los estímulos a los que queremos dar prioridad, controlar nuestras acciones y, además, requiere un nivel adecuado de activación. Pero, ante todo, la atención es un recurso muy limitado que es imprescindible para que se dé el aprendizaje, por lo que puede resultar útil fraccionar el tiempo dedicado a la clase en bloques con los respectivos parones. En la práctica, queremos que el nivel de activación del estudiante sea el adecuado. Los extremos son perjudiciales, tanto el defecto (dormidos), como el exceso (ansiosos o sobreestimulados). De entre las diferentes redes atencionales que han identificado los estudios con neuroimágenes, existe una especialmente importante: la red de control o atención ejecutiva. El ejercicio, los entornos naturales y ciertas técnicas de meditación pueden ayudar a mejorar el desempeño y la concentración de los estudiantes durante las tareas posteriores (Posner et al., 2015).
Figura 5.png

5. Es clave cooperar, dialogar y compartir para aprender
Es evidente que nuestro cerebro está tremendamente comprometido con las cuestiones sociales, porque no cesamos de pensar en ellas en ningún momento del día. Las experiencias cotidianas nos permiten interactuar y conectarnos con los demás a través de las expresiones faciales, la mirada o el contacto físico. Y esta parece ser la razón que nos hizo únicos a los seres humanos.
Una estrategia muy útil en el aula (ver video inicial) cuando los docentes somos incapaces de explicar de forma adecuada a un alumno un determinado concepto consiste en pedir a un compañero suyo, que sí que lo ha entendido, que se lo explique. En muchas ocasiones, el alumno que acaba de aprender algo conoce las dificultades que ha tenido para hacerlo mejor incluso que el propio profesor, al cual le puede parecer obvio lo que aprendió hace mucho tiempo. Esta situación en la que los alumnos se convierten en profesores de otros —tutoría entre iguales— beneficia el aprendizaje de todos ellos (Smith et al., 2009). Y es que desde el nacimiento estamos programados para aprender a través de la imitación y la interacción. Nuestro cerebro es social.

Figura 6

6. Desarrollar las funciones ejecutivas en el aula
Estas funciones tan importantes para la vida cotidiana están vinculadas al proceso madurativo de la corteza prefrontal y resultan imprescindibles para el éxito académico y el bienestar personal del estudiante. Las funciones ejecutivas que la gran mayoría de investigadores considera como básicas son el control inhibitorio, la memoria de trabajo y la flexibilidad cognitiva, las cuales permiten desarrollar otras funciones complejas como el razonamiento, la resolución de problemas y la planificación.
Existen diferentes formas de entrenar directamente las funciones ejecutivas, como puede ser a través de programas informáticos, de ejercicio físico, de educación emocional o promoviendo el bilingüismo en la infancia. Sin embargo, Adele Diamond, una de las pioneras en el campo de la neurociencia del desarrollo, sugiere que las intervenciones más beneficiosas son aquellas que trabajan las funciones ejecutivas de forma indirecta, incidiendo en lo que las perjudica —como el estrés, la soledad o una mala salud— y provocando mayor felicidad, vitalidad física y un sentido de pertenencia al grupo (Diamond y Ling, 2016). Seguramente, el entrenamiento puramente cognitivo no sea la forma idónea de mejorar la cognición. El éxito académico y personal requiere atender las necesidades sociales, emocionales y físicas de los niños. O si se quiere, nada mejor para facilitar un aprendizaje eficiente y real que promover la educación física, el juego, la educación artística y la educación socioemocional.

Figura 7

7. La mirada, el vínculo y la expectativa del maestro condiciona el aprendizaje de los estudiantes
Hoy más que nunca el progreso requiere trabajar en equipo, saber comunicarse, empatizar, controlar los impulsos o establecer relaciones adecuadas. Para todo ello se necesita una buena educación emocional (en la que tiene que participar toda la comunidad, por supuesto), aquella que mediante un proceso continuo nos permite potenciar toda una serie de competencias emocionales y sociales básicas que no han de sustituir a las cognitivas, sino que las han de complementar. Si entendemos la educación como un proceso de aprendizaje para la vida, los programas de educación emocional resultan imprescindibles, porque contribuyen al bienestar personal y social. Y tienen una incidencia positiva sobre el rendimiento académico del alumnado (Durlak et al., 2011).
Cuando en el aula se respira un clima emocional positivo, el alumno se encuentra seguro porque sabe que se asume con naturalidad el error, se fomenta un aprendizaje activo en el que se sabe protagonista, se suministran retos adecuados y existen siempre expectativas positivas por parte del profesor hacia sus alumnos, con lo que se evitan esas etiquetas tan contraproducentes para el aprendizaje.

Figura 8

8. El movimiento es crítico para el desarrollo del cerebro y para la consolidación de la memoria
Podríamos decir que, desde una perspectiva evolutiva, el movimiento constituye una necesidad grabada en nuestros genes. En los últimos años la neurociencia ha revelado que el ejercicio regular puede modificar el entorno químico y neuronal que favorece el aprendizaje, es decir, los beneficios son también cognitivos (Donnelly et al., 2016).
La actividad física tiene un impacto positivo en el funcionamiento del hipocampo (imprescindible en la consolidación de la memoria), en la liberación de importantes neurotransmisores y en el desarrollo de las funciones ejecutivas.
Como ya sabían los clásicos (la enseñanza debe ser por la acción, mantenía John Dewey sin tener conocimientos de neurociencia) aprendemos mejor las cosas a través de la práctica y no a partir de la escucha abstracta. Podemos decir que los sistemas sensoriales y motores que gobiernan el cuerpo están enraizados en los procesos cognitivos que nos permiten aprender. O como le gusta decir a Giacomo Rizzolatti, el descubridor de las neuronas espejo, el cerebro que actúa es un cerebro que comprende. Y nada mejor para mantenernos activos que integrar el componente lúdico en el aprendizaje.

Figura 9

Una nueva educación es posible, efectivamente. Asumiendo siempre que el proceso de transformación parte de uno mismo. Para luego ir amplificando el mensaje evaluando con sentido crítico todo lo que se hace. Y para ello es necesario el conocimiento de las evidencias empíricas que provienen de las investigaciones científicas que irán vinculando, cada vez más y mejor, neurociencia y educación. Como dijo el gran Josechu (José Ramón Gamo): “Educamos para que la gente sea capaz de soñar utopías”. Visualicemos el cambio y el sueño se irá convirtiendo en realidad. No hay excusas.

Figura 10

Jesús C. Guillén

Referencias:
1. Blakemore S. J. (2018). Inventing Ourselves: The Secret Life of the Teenage Brain. London: Doubleday.
2. Diamond A., Ling D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18, 34-48.
3. Donnelly J. E. et al. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review: American College of Sports Medicine Position Stand. Medicine and Science in Sports and Exercise, 48, 1197–1222.
4. Durlak, J.A. et al. (2011). The impact of enhancing students’ social and emotional learning: a meta-analysis of school-based universal interventions. Child Development, 82, 405-432.
5. Giedd J. N. et al. (2015). Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology, 40(1), 43-49.
6. Groch S. et al. (2017). Prior knowledge is essential for the beneficial effect of targeted memory reactivation during sleep. Scientific Reports 7:39763.
7. Posner M. et al. (2015). Enhancing attention through training. Current Opinion in Behavioral Sciences, 4, 1-5.
8. Smith M. K. et al. (2009). Why peer discussion improves student performance on in-class concept questions. Science, 323, 122-124.

Anuncios

El cerebro matemático en el aula: algunas ideas clave

Es bastante extraño ver que a muchos niños les desagrada las matemáticas, pero si observamos a los más pequeños son muy intuitivos. Hemos visto circuitos en el cerebro que se ocupan de los números, del espacio o la geometría que están presentes en la infancia temprana. Creo que el error en la escuela es enseñarle a los niños que la matemática es muy abstracta, muy complicada. Si basáramos las matemáticas en intuiciones, que ya están presentes en el cerebro del niño, podríamos ayudarles a que las disfruten.

                                                        Stanislas Dehaene

¿Quieres conocer el número del calzado de la persona que tienes al lado y qué edad tiene? Puedes saberlo sin preguntárselo. Dile que escriba en una hoja, sin enseñártela, el número de calzado que utiliza. Que lo multiplique por 2 y que sume 5 al resultado obtenido. Que multiplique esta suma por 50 y que le sume al producto encontrado 1768. Finalmente, que reste a ese número su año de nacimiento. Así habrá obtenido un número de cuatro cifras. Las dos primeras corresponden al número de su calzado y las dos siguientes a los años que cumplirá el 2018.
Cuestiones numéricas como estas causan asombro en estudiantes de todas las etapas educativas (te animamos a descubrir el truco, lo cual puede amplificar el asombro y ser muy productivo) y es que así somos los seres humanos, curiosos por naturaleza, Y no solo eso, sino que nacemos también con ciertas predisposiciones genéticas hacia el aprendizaje, algo especialmente relevante cuando nos adentramos en la educación matemática. Sin embargo, hemos llegado a escuchar a niños de menos de diez años comentarios del tipo: «A mí siempre se me han dado mal las matemáticas», «nunca podré aprobarlas, porque no he nacido para eso» o «hay que ser muy inteligente para entenderlas». ¿Cómo es posible odiar las matemáticas con menos de 10 años? Lo cierto es que esto ocurre y que las dificultades en matemáticas son muy frecuentes en el aula y provocan estrés y ansiedad en muchos estudiantes. Investigaciones recientes en neurociencia centradas en el aprendizaje de las habilidades numéricas (importantes para el aprendizaje matemático inicial) pueden ayudar a mejorar esta situación. Aunque asumimos, por supuesto, que no existen recetas milagrosas ni soluciones educativas únicas.

Intuición numérica en la cuna
Aunque resulta sorprendente, los bebés son capaces de detectar cambios sutiles en las cantidades numéricas mejor que en otros parámetros físicos como, por ejemplo, el tamaño de los objetos. Recién nacidos pueden llegar a distinguir un conjunto de 4 puntos –vinculados a estímulos sonoros– respecto a uno de 12 (proporción 1:3); con 6 meses diferencian un conjunto de 8 puntos respecto a uno de 16 (proporción 1:2; ver video); y con 9 meses distinguen uno de 8 respecto a uno de 12 (proporción 2:3), es decir, muestran un sentido numérico que se va perfeccionando con la edad (Szkudlarek y Brannon, 2017).

Y no solo eso. El bebé nace con mecanismos innatos que le permiten discriminar entre dos o tres objetos sin necesidad de contar y entender operaciones aritméticas elementales en las que intervienen los primeros números naturales. Por ejemplo, en un experimento que se ha replicado varias veces, se mostró a bebés de cinco meses un juguete en un escenario y, a continuación, se subió una pantalla para que lo ocultara. Ante la mirada del bebé, se colocó un segundo juguete detrás de la pantalla y, posteriormente, se descubrió de nuevo. En algunas ocasiones aparecían dos juguetes, lo cual coincide con el resultado lógico (1 + 1 = 2), mientras que en otros casos se mostraba solamente uno, lo que corresponde a un resultado imposible (1 + 1 = 1). En psicología del desarrollo ya se sabía que los bebés pasan más tiempo analizando una situación inesperada o irreal que frente a escenas normales. Y así fue: los bebés dedicaron mucho más tiempo a observar la situación en la que aparecía solo un juguete, que era la que se asociaba al resultado imposible. Y algo parecido ocurre cuando se les muestra a bebés de 9 meses animaciones en las que se observan operaciones del tipo 5 + 5 = 10, frente a 5 + 5 = 5, o 10 – 5 = 5, frente a 10 – 5 = 10 (McCrink y Wynn, 2004; ver figura 1).
Este tipo de experimentos demuestra que nacemos con un sentido numérico rudimentario, que también está presente en otros animales –fundamental en su proceso adaptativo al entorno–, cosa que sugiere que es independiente del lenguaje y que lleva tras de sí una larga historia evolutiva.

Figura 1

Piaget se equivocó¹
Piaget, cuya influencia en la educación y en el desarrollo curricular ha sido incuestionable durante muchos años, sostenía que la adquisición del concepto de número ha de ir precedido de un proceso de reconstrucción cognitiva continuo, alejado de cualquier idea preconcebida sobre la aritmética. Pero las investigaciones neurocientíficas de los últimos años han revelado que cuando el bebé nace su cerebro no es una página en blanco y que los niños en la etapa de Educación Infantil muestran un sentido numérico que les faculta para adentrarse en el terreno de la aritmética sin que se les haya enseñado el lenguaje simbólico asociado a ella.
El sentido numérico que permite a los bebés identificar pequeñas cantidades sin necesidad de contar también les permite comparar cantidades mayores (ver figura 2), un proceso que se irá puliendo progresivamente a lo largo de la infancia. Se cree que la integración de estas dos formas diferentes de representación numérica, una para números pequeños –hasta el tres– y otra intuitiva para números grandes –que nos informa de que cualquier conjunto tiene asociado un número cardinal–, es fundamental para que el niño, en torno a los tres o cuatro años de edad, vaya comprendiendo el concepto de número natural², esencial para el aprendizaje de la aritmética (Dehaene, 2016). Como paso previo a la adquisición de conceptos matemáticos más complejos, el niño infiere que un conjunto posee un número de elementos concreto, por ejemplo 8, y que este número aporta una información diferente de 7 o 9.

Figura 2

Niños de cinco y seis años que no saben sumar se desenvuelven muy bien en operaciones del tipo: «María tiene 21 golosinas y consigue 30 más. Juan tiene 34. ¿Quién tiene más?», referidas a la suma, o «María tiene 64 golosinas y regala 13. Juan tiene 34. ¿Quién tiene más?», referidas a la resta (Gilmore et al, 2007). Esto prueba que son capaces de convertir el planteamiento verbal del problema en cantidades y de pensar en ellas sin que les haga falta realizar cálculos exactos, esto es, poseen una comprensión de la aritmética simbólica basada en una intuición temprana de las magnitudes.

El cerebro matemático
Los estudios con neuroimágenes han confirmado que el pensamiento matemático activa circuitos cerebrales independientes de los que intervienen en el procesamiento del lenguaje (ver figura 3). En concreto, existe una franja específica de la corteza cerebral que se encuentra en los dos hemisferios del lóbulo parietal, el surco intraparietal, que se activa ante cualquier tipo de presentación numérica, sea un conjunto de puntos, un símbolo o una palabra que hace referencia a un número (Amalric y Dehaene, 2016).

Figura 3

Pues bien, durante su desarrollo, el niño aprende a relacionar la representación no simbólica («∎∎∎») asociada a la aproximación, que es independiente del lenguaje, con el sistema de representación simbólico que se le enseña para caracterizar a los números, bien mediante los números arábigos (3, 4…), bien mediante las palabras (tres, cuatro…). Existen evidencias empíricas que demuestran que estos dos sistemas de representación diferentes, uno innato y el otro adquirido, están muy relacionados: los niños que se desenvuelven mejor en tareas no simbólicas del tipo estimaciones o aproximaciones, lo hacen también mejor en las tareas que requieren del lenguaje simbólico, como ocurre con las operaciones aritméticas, y ello predice un mejor rendimiento en la asignatura de matemáticas años después (Wang et al., 2016). No es casualidad que los programas informáticos utilizados con éxito para el tratamiento de la discalculia –dificultad asociada al procesamiento numérico–, como Number Race (ver figura 4) o Rescue Calcularis se basen en el diseño de tareas que integran las competencias numéricas asociadas al conteo con aquellas intuitivas que permiten comparar cantidades (Guillén, 2017). De esta forma se mejora la activación del surco intraparietal –también su conexión con la corteza prefrontal–, que sería para los números el equivalente del área visual de formación de palabras para las letras (para ampliar información leer El cerebro lector: algunas ideas clave).

Figura 4

Y más allá de las correlaciones, existen algunos experimentos, tanto en adultos (Park y Brannon, 2014), como en niños de 6 y 7 años (Hyde et al., 2014), y en niños de entre 3 y 5 años (Park et al., 2016), que sugieren una relación causal entre el entrenamiento centrado en los cálculos aproximados de cantidades (ver figura 5; izda) y el desempeño en los cálculos exactos característicos de las operaciones aritméticas básicas. Una menor incidencia tiene, por ejemplo, el entrenamiento centrado exclusivamente en la comparación de cantidades aproximadas, tareas que trabajan la memoria de trabajo visuoespacial –en las que se han de recordar secuencias de posiciones en una pantalla– o actividades de ordenación de símbolos numéricos (ver figura 5; dcha).

Figura 5

Y si el sistema numérico aproximado influye en el rendimiento académico del alumnado en las matemáticas, también parece hacerlo el conocimiento numérico simbólico, como es el caso de las tareas aritméticas que incluyen los conceptos de cardinal –«¿Cuántos lápices hay sobre la mesa?» – o de ordinal –«Señala el tercer lápiz»–. Introducir actividades informales en la infancia temprana que incluyan los símbolos numéricos, como sucede en multitud de juegos de mesa, constituye una estrategia educativa muy útil que también se puede favorecer en el entorno familiar (Merkley y Ansari, 2016; ver figura 6). En pocas palabras, parece existir una relación bidireccional entre los símbolos y las cantidades. Y esto parece corroborarlo un estudio muy reciente en el que han participado 1540 niños indios en la etapa preescolar (edad promedio 5 años). El entrenamiento de conceptos matemáticos no simbólicos (comparaciones y estimaciones) mejoró habilidades numéricas y espaciales de los niños pero los autores sugieren que, si se quiere incidir más sobre el aprendizaje formal inicial de las matemáticas, estos juegos deben conectar directamente las comparaciones o estimaciones de cantidades con las palabras y símbolos asociados a los números y que serán especialmente beneficiosos cuando se utilicen durante la enseñanza formal de las matemáticas (Dillon et al., 2017).

Figura 6

De la teoría a la práctica
No sabemos cuántos niños de los muchos que manifiestan dificultades en el aprendizaje de la aritmética padecen alteraciones cerebrales identificables. Seguramente, en muchos casos no existe ninguna alteración y el problema reside en que no han recibido la enseñanza adecuada. De hecho, algunos niños, como aquellos que han crecido en entornos socioeconómicos desfavorecidos, muestran déficits en el cálculo aun teniendo un sentido numérico normal, es decir, no pueden acceder a él a través de los símbolos numéricos debido a la peor educación que han recibido (Dehaene, 2016). La pregunta que nos planteamos es: ¿qué puede hacer la escuela al respecto? Analicemos algunas cuestiones que creemos que pueden ser relevantes porque facilitan el desarrollo del sentido numérico del niño.

Fomentando la intuición numérica
Hemos visto que operaciones como sumas y restas simples, estimaciones numéricas, comparaciones o el conteo emergen de forma espontánea en los niños, razón por la cual tendría que aprovecharse esta capacidad numérica intuitiva que forma parte de nuestra estructura cerebral, en lugar de introducir las matemáticas como una disciplina abstracta. Lo importante no es enseñar recetas aritméticas –en su mayor parte, repetitivas y descontextualizadas–, sino ir asociando el cálculo a su significado explícito. En definitiva, aprovechar el bagaje informal de que disponen los niños. Por ejemplo, podemos utilizar tarjetas con círculos o agujeros dispuestos de forma ordenada o aleatoria (ver figura 7) y preguntarles a los niños, sin necesidad de contar, por ejemplo, cuántos puntos hay en una tarjeta, que elijan tarjetas que tienen el mismo número de puntos o que comparen el número de dos de ellas. Incluso se pueden disponer los puntos formando figuras para que los niños vayan visualizando la relación entre los números y las formas geométricas.

Figura 7

De lo concreto a lo abstracto (y no al revés)
Cualquier actividad se puede utilizar para que los niños vayan desarrollando el razonamiento matemático y la comprensión numérica si les vamos haciendo preguntas sobre lo que están haciendo. Así, por ejemplo, con una colección de lápices se les puede preguntar cuántos hay, cuántos hay de cada color, cuál es el más largo y cuál es el más corto o si de un color hay más lápices que de otro.
Es muy importante que los niños vayan asociando los números con objetos concretos de la vida real. Así, por ejemplo, una bicicleta tiene dos ruedas, un triciclo tres y un coche cuatro o una persona tiene dos piernas y el perro cuatro patas. Y así podemos animar al niño para que encuentre o describa otras cosas con un número determinado de partes, como los tres colores de un semáforo.
Otra forma útil de acercar el conocimiento matemático al mundo real es la de realizar actividades en las que el niño ordena y clasifica elementos. Por ejemplo, podemos mostrarle diferentes tipos de manzanas y pedirle que elija las rojas o que coloque en un recipiente las rojas y en otro las verdes o, si todas son del mismo color, que coloque en un recipiente las más grandes y en otro las más pequeñas.

¡A jugar!
Hay muchas actividades que pueden utilizarse para mejorar el conteo. Por ejemplo, para reforzar el principio cardinal mediante el cual el niño entiende que el último número contado es el que indica el número de elementos del conjunto, se pueden utilizar fichas con caras de diferentes colores. Y se le puede preguntar al niño cuantas hay de un color determinado.
El juego es un mecanismo natural imprescindible para el aprendizaje y es especialmente importante en matemáticas, tal como comentábamos anteriormente. Podemos jugar a que el niño adivine un número y lo vamos guiando con un “más” o “menos”, o utilizar juegos de Lego o similares para pedirle que añada piezas del conjunto pequeño al más grande hasta que tengan el mismo número o al revés, o ábacos o juegos de mesa para entrenar el sistema de representación numérico y su relación espacial, o utilizar programas informáticos como Number Worlds o Number Race.
Relacionado con esto, se ha comprobado también la importancia del factor familiar. Leer cuentos con contenido matemático explícito que invita a reflexionar a los niños –como en el caso de la aplicación Bedtime Math– mejora su rendimiento académico en la etapa de primaria (Berkowitz et al., 2015). Y es que recursos como los lúdicos o artísticos son verdaderamente efectivos cuando inciden de forma explícita en los contenidos matemáticos, tal como ocurre cuando se adoptan programas curriculares basados en juegos interactivos que utilizan una gran variedad de materiales pedagógicos (Clements y Sarama, 2011; ver figura 8).

Figura 8

No existen dogmas
Muchas veces, por ejemplo, se considera inadecuado que el niño cuente con los dedos. Sin embargo, sabemos que contar con los dedos es un precursor importante para aprender la base 10, que el entrenamiento con los dedos mejora las habilidades matemáticas y que aquellos que mejor saben manejarlos obtendrán después mejores resultados en cálculos numéricos (Gracia-Bafalluy y Noël, 2008).
Del mismo modo, se suele considerar un error que el niño resuelva una operación aritmética básica del tipo 5 + 6 = 11 de forma indirecta y no de memoria –pensando, por ejemplo, que 5 + 5 es 10 y que 6 es una unidad más que 5–. Todo ello coarta la creatividad del alumnado y va convirtiendo las matemáticas iniciales en un cálculo exclusivamente mecánico. Esa es la razón por la que un niño de seis años puede responder de forma inmediata, sin realizar ningún cálculo, que 7 es el resultado de la operación 7 + 4 – 4, mientras que uno de nueve años, con mucha mayor experiencia, tiende a realizar el cálculo completo (7 + 4 = 11 y 11 – 4 = 7) porque le parece que es lo adecuado. Y despreciar las habilidades tempranas de los niños puede perjudicar su opinión posterior alrededor de las matemáticas –cosa que no suele ocurrir al principio de la Educación Primaria– y hacer que se desencadenen reacciones emocionales negativas asociadas a la ansiedad y el estrés, las cuales ocasionan muchos estereotipos y percepciones erróneas en los alumnos sobre su propia capacidad, que a menudo se mantendrán a lo largo de la vida. Por cierto, se ha comprobado que los adolescentes que muestran ansiedad ante las matemáticas obtienen mejores resultados en los exámenes si escriben sobre sus sentimientos y preocupaciones durante diez minutos antes de realizar las pruebas (Ramírez y Beilock, 2011; ver figura 9).

Figura 9.png

Matemáticas reales
En la práctica, la mejor forma para prevenir y combatir las opiniones negativas de los alumnos sobre las matemáticas es vincular su aprendizaje a situaciones concretas de la vida real, y no a conceptos abstractos. Por ejemplo, consideremos la resta 7 – 3 = 4. Los adultos podemos asimilar esa situación a una gran variedad de casos prácticos: si en un recorrido de 7 km hemos caminado 3 km, nos faltarán otros 4 km; si una temperatura inicial de 7 ºC desciende 3 ºC, la temperatura final será de 4 ºC, etc. El día que se introducen los números negativos y el profesor escribe 3 – 7 = –4, el niño puede tener dificultades para entender el significado del cálculo. En este caso, la temperatura le puede aportar una imagen intuitiva más eficaz que la distancia –concebir –4 ºC facilita el aprendizaje del concepto, al lado de –4 km– La mayoría de los niños están encantados de aprender matemáticas cuando se vincula su conocimiento a situaciones cotidianas y se resaltan sus aspectos divertidos. Y todo ello, antes del aprendizaje de los conceptos abstractos, que se irán adquiriendo de forma paulatina. Sin olvidar la relevancia del profesorado en este proceso. En un interesante estudio, se comprobó que el aprendizaje durante el curso escolar de niños de cuatro años mejoró ostensiblemente cuando el docente hablaba continuamente sobre cuestiones numéricas (Klibanoff et al., 2006).

Mentalidad de crecimiento en el aula
Sabemos que las creencias propias del alumno sobre su capacidad, muchas veces condicionadas por experiencias personales negativas, influyen de forma determinante en su aprendizaje. El proceso se amplifica en el caso concreto de las matemáticas debido a la creencia generalizada de que se requiere un talento específico para su dominio. Pero como ocurre en cualquier otra disciplina, no existen determinismos genéticos. De hecho, se han aplicado ya ciertas técnicas de estimulación eléctrica transcraneal no invasivas que mejoran el desempeño aritmético de niños con dificultades de aprendizaje (Looi et al., 2017). Cuánto daño han hecho –y siguen haciendo– las famosas etiquetas o estereotipos que chocan con lo que sabemos hoy día sobre nuestro cerebro plástico en continua transformación y que dañan gravemente las creencias del alumno sobre su propia capacidad. Sin olvidar que hay evidencias empíricas muy recientes que demuestran que no existen diferencias de género en la adquisición de las competencias matemáticas (Hutchison et al., 2018).
Los números poseen un significado para nosotros, como lo tienen las palabras, y en los dos casos aprovechamos nuestras capacidades innatas para ir desarrollando esta comprensión. Nacer con este sentido numérico innato no nos convierte per se en excelentes matemáticos, pero sí que facilita el proceso de comprensión de las matemáticas. Y, por supuesto, a pesar de lo que en su día dijera Piaget, no hay ninguna necesidad de esperar hasta los siete años para que el niño reciba sus primeras enseñanzas sobre aritmética.
Jesús C. Guillén


¹ Una revisión más exhaustiva sobre los planteamientos erróneos de Piaget vinculados al aprendizaje de la aritmética la puedes encontrar en la referencia Guillén, 2015.

² El concepto de número natural se va desarrollando lentamente y es anterior al conteo. Niños de 3 años son capaces de diferenciar, por ejemplo, cinco objetos de seis, utilizando la correspondencia uno a uno. Pero no captan la lógica básica del número natural (+1,-1, es decir, añado un objeto o quito uno). Con 4 años, aproximadamente, van captando la esencia de los números naturales a la vez que van entendiendo el significado de las palabras asociadas a los números y el procedimiento utilizado para el conteo (Izard et al., 2014)

Referencias:
1. Amalric M., Dehaene S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. PNAS 113(18), 4909-4917.
2. Ansari D. (2016). The neural roots of mathematical expertise. PNAS 113(18), 4887-4889.
3. Berkowitz T. et al. (2015). Math at home adds up to achievement in school. Science 350 (6257), 196-198.
4. Clements D., Sarama J. (2011). Early childhood mathematics intervention. Science 333, 968-970.
5. Dehaene S. (2016). El cerebro matemático: Como nacen, viven y a veces mueren los números en nuestra mente. Buenos Aires: Siglo Veintiuno.
6. Dillon M. R. et al. (2017). Cognitive science in the field: A preschool intervention durably enhances intuitive but not formal mathematics. Science 357 (6346), 47-55.
7. Gilmore C., McCarthy S. E., Spelke E. S. (2007). Symbolic arithmetic knowledge without instruction. Nature 447, 589-591.
8. Gracia-Bafalluy M., Noël M. P. (2008). Does finger training increase young children’s numerical performance? Cortex 44 (4), 368-375.
9. Guillén J. C. (2015). Y ¿si Piaget se equivocara con las matemáticas? En Neuromitos en educación: el aprendizaje desde la neurociencia, 73-93. Barcelona: Plataforma Actual.
10. Guillén J. C. (2017). Neuroeducación en el aula: de la teoría a la práctica. UK: CreateSpace.
11. Hyde D. et al. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition 131, 92-107.
12. Hutchison J., Lyons I., Ansari D. (2018). More similar than different: Gender differences in basic numeracy are the exception, not the rule. Child Development.
13. Izard V., Streri A., Spelke E. (2014). Toward exact number: Young children use one-to-one correspondence to measure set identity but not numerical equality. Cognitive Psychology 72, 27-53.
14. Klibanoff R. S. et al. (2006). Preschool children’s mathematical knowledge: The effect of teacher ‘math talk’. Developmental Psychology 42, 59-69.
15. Looi C. Y. et al. (2017). Transcranial random noise stimulation and cognitive training to improve learning and cognition of the atypically developing brain: A pilot study. Scientific Reports 7(1), 4633.
16. McCrink K., Wynn K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science 15, 776-781.
17. Merkley R., Ansari D. (2016). Why numerical symbols count in the development of mathematical skills: evidence from brain and behavior. Current Opinion in Behavioral Sciences 10, 14-20.
18. Park J., Brannon E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition 133(1), 188-200.
19. Park J. et al. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology 152, 278-293.
20. Ramírez G., y Beilock S. L. (2011). Writing about testing worries boosts exam performance in the classroom. Science 331, 211-213.
21. Szkudlarek E., Brannon E. M. (2017). Does the approximate number system serve as a foundation for symbolic mathematics? Language Learning and Development 13(2), 171-190.
22. Wang J. J. et al. (2016). Changing the precision of preschoolers’ approximate number system representations changes their symbolic math performance. Journal of Experimental Child Psychology 147, 82-99.

Diez elementos clave en la acción educativa

8 noviembre, 2017 6 comentarios

Tenemos un sistema educativo muy primitivo. En parte, porque aún falta por saber cómo funciona nuestro cerebro durante el aprendizaje y, en parte, porque lo que se sabe no se aplica.

Torsten Wiesel

Antecedentes
Hace cinco años que identificamos en Escuela con Cerebro, a través del artículo ‘Neuroeducación: estrategias basadas en el funcionamiento del cerebro’, algunas de las evidencias empíricas que provienen de las ciencias cognitivas que tienen implicaciones pedagógicas relevantes. Tres años más tarde actualizamos esa información en el artículo publicado en Niuco ‘Las claves de la neuroeducación’ (ver figura 1), que se ha analizado de forma más profunda en el libro reciente Neuroeducación en el aula: De la teoría a la práctica, un acercamiento de la ciencia del cerebro al aula en el que se hace confluir la teoría con las aplicaciones prácticas. Siempre interpretando de forma adecuada la información que proviene de ese suministro continuo de pruebas que constituye la ciencia, algo en lo que también incidimos en el libro Neuromitos en educación: el aprendizaje desde la neurociencia.

8 factores en diagramaFigura 1

Este mismo año, junto a Anna Forés, hemos creado un modelo en el que identificamos 10 factores que tienen el respaldo empírico de las investigaciones y que creemos que pueden ser importantes en la acción educativa, como en la planificación y desarrollo de la unidad didáctica, por ejemplo. Este modelo se analiza en profundidad en el capítulo ‘¿Qué nos dice la neuroeducación acerca de las pedagogías emergentes?’ del libro Pedagogías emergentes: 14 preguntas para el debate, recientemente publicado. A continuación compartimos cuáles son estos factores en un breve resumen (ver figura 2). Los tres primeros son anteriores a la ejecución de la propuesta pedagógica; los elementos interiores del hexágono hacen referencia a la realización de la propuesta, siendo el 7 (evaluación formativa y feedback) un factor transversal que está presente en todo el proceso. Y los últimos elementos, el 9 y el 10, tendrían mayor incidencia después de la acción educativa propiamente dicha.

Modelo2Figura 2

1. Cooperación del profesorado
En los centros educativos se habla mucho de la importancia del trabajo cooperativo, pero este no se limita al alumnado y requiere un aprendizaje socioemocional previo que, en el aula, siempre parte de nuestra formación. Un trabajo eficaz entre el profesorado en la planificación curricular, en el análisis y mejora de las prácticas educativas o en la evaluación del aprendizaje constituye una de las estrategias que inciden más en el rendimiento académico del alumnado. Si los profesores somos capaces de cooperar de forma adecuada podremos generar entornos de aprendizaje propicios en los que las expectativas sean positivas y una cultura de centro capaz de abrirse a toda la comunidad educativa y a la sociedad. Todo en consonancia con nuestro cerebro plástico y social.
Para saber más:
Donohoo J. (2017). Collective efficacy: how educators’ beliefs impact student learning. Thousand Oaks: Corwin.

2. Evaluación inicial
Nuestro cerebro está constantemente comparando la información almacenada con la novedosa. Como vamos aprendiendo en un proceso continuado en el que se van integrando las ideas nuevas en las ya conocidas a través de la asociación de patrones, resulta imprescindible identificar los conocimientos previos del alumnado.
Esto se puede hacer, por ejemplo, a través de formularios, mapas conceptuales, debates, preguntas abiertas, rutinas de pensamiento, plataformas digitales como AnswerGarden, etc. Constituye el punto de partida antes de abordar un tema o una unidad didáctica, para poder adaptar la planificación prevista a la evolución de cada estudiante.
Hay algunas preguntas que nos podríamos plantear:
• ¿Qué tiempo durará la evaluación inicial?
• ¿Cómo haré la evaluación inicial?
• ¿En qué momento anterior a la unidad didáctica debo hacer la evaluación inicial?
• ¿Tendré tiempo tras conocer los resultados de la evaluación inicial para preparar y/o modificar mi planificación didáctica?
Para saber más:
Sousa D. A. (2015). Brain-friendly assessments: what they are and how to use them. West Palm Beach: Learning Sciences International.

3. Objetivos de aprendizaje y criterios de éxito
Los objetivos de aprendizaje constituyen un punto de partida fundamental en la planificación de la unidad didáctica, pero para que puedan alcanzarse es imprescindible que el profesor sea capaz de comunicar y compartir con el alumnado, de forma clara y precisa y en toda la experiencia de enseñanza y aprendizaje, qué conocimientos, actitudes, valores o competencias son útiles en el proceso. Junto a ello, los criterios de éxito, si son claros y concretos, permitirán a los estudiantes conocer cómo y cuándo alcanzan los objetivos de aprendizaje. Y también podemos involucrarlos en su creación, por supuesto. Las investigaciones revelan que el reto, compromiso, confianza, expectativas altas y comprensión constituyen componentes esenciales del aprendizaje vinculados a los objetivos de aprendizaje y a los criterios de éxito.
Para saber más:
Hattie, J. (2012). Visible learning for teachers. Maximizing impact on learning. London: Routledge.

4. Atención
La neurociencia ha confirmado que la atención no constituye un proceso cerebral único ya que existen diferentes redes atencionales que hacen intervenir circuitos neuronales, regiones cerebrales y neurotransmisores concretos, y que siguen procesos de desarrollo distintos. Especialmente relevante en educación es la red de control o atención ejecutiva que permite al estudiante focalizar la atención de forma voluntaria inhibiendo estímulos irrelevantes. A parte de ciertos programas informatizados, se han comprobado los beneficios del ejercicio físico y del mindfulness sobre esta atención ejecutiva.
Si la atención es un recurso limitado y a los niños y a los adolescentes les cuesta focalizarla durante periodos de tiempo prolongados resultará muy útil fraccionar el tiempo dedicado a la clase en bloques con los respectivos parones que pueden ser activos, por supuesto. El juego y el ejercicio físico constituyen estrategias potentes para optimizar los procesos atencionales que son imprescindibles para el aprendizaje.
Para saber más:
Posner M. I., Rothbart M. K., Tang Y. Y. (2015): “Enhancing attention through training”. Current Opinion in Behavioral Sciences 4, 1-5.

5. Pensamiento crítico y creativo
El aprendizaje requiere dotar de sentido y significado lo que se está trabajando. Las necesidades educativas en los tiempos actuales van más allá de los contenidos curriculares concretos. Requieren la adquisición de competencias básicas, como la creatividad, el pensamiento crítico o la resolución de problemas, que fomentan un pensamiento de orden superior y vinculan el aprendizaje a la vida cotidiana. Y una buena estrategia para facilitar un aprendizaje real y profundo reside en la utilización de metodologías híbridas inductivo-deductivas que combinan transmisión y cuestionamiento. Enfoques como el Peer Instruction o el Flipped Learning que sacan la transmisión de información fuera de la clase y liberan mucho tiempo de la misma para que los alumnos puedan ser protagonistas activos del aprendizaje, son buenos ejemplos de ello. En esta situación, las tecnologías digitales pueden ser herramientas potentes facilitadoras del aprendizaje.
En lo referente a la creatividad, sabemos que es una capacidad que no es innata y que puede fomentarse en cualquier materia, etapa educativa o estudiante. Y una estupenda forma de potenciar un aprendizaje más abierto, reflexivo y creativo consiste en integrar las actividades artísticas en los contenidos curriculares identificados.
Para saber más:
Freeman S. et al. (2014): “Active learning increases student performance in science, engineering, and mathematics”. Proceedings of the National Academy of Sciences 111 (23), 8410-8415.

6. Trabajo cooperativo
El aprendizaje constituye un proceso social. En la vida compartimos, aprendemos y vivimos junto a otras personas, pero esas situaciones de aprendizaje no prevalecen en muchas escuelas. Se aprende en grupo, pero no como grupo. Al crearse el adecuado vínculo emocional entre los compañeros se genera un sentido de pertenencia a la clase y a la escuela que facilita el buen desarrollo académico y personal del alumnado. Como confirman estudios muy recientes, cuando nos sentimos socialmente apoyados mejoran nuestras funciones ejecutivas del cerebro.
Cuando los estudiantes han adquirido mayor experiencia en este tipo de trabajo, ya pueden realizar mejor proyectos cooperativos. Como en el caso del aprendizaje-servicio, una propuesta educativa que consiste en aprender haciendo un servicio a la comunidad. Este tipo de proyectos son los que parece que inciden más en el aprendizaje del alumnado.
Asimismo, se han comprobado los beneficios de la tutoría entre iguales, una situación en la que los estudiantes se convierten en profesores de otros compañeros. La simple expectativa de la acción cooperativa es suficiente para liberar la dopamina que fortalecerá el deseo de seguir cooperando.
Para saber más:
Lieberman, M. D. (2013). Social: why our brains are wired to connect. Oxford: Oxford University Press.

7. Evaluación formativa y feedback
Tradicionalmente, los profesores nos hemos centrado en transmitir de forma correcta los conocimientos y no tanto en entender las causas por las que los alumnos no los comprenden. Pero si lo verdaderamente importante es el aprendizaje, especialmente de competencias, deberíamos disponer de una gran variedad de actividades que nos permitieran ver cómo se va gestando el aprendizaje del alumno, identificando sus fortalezas y analizando los errores que les permitan seguir mejorando. Y ese tendría que ser el gran objetivo de la evaluación: impulsar el aprendizaje a través de un proceso continuo.
Los estudios sugieren que una buena evaluación formativa se caracteriza por:
1. Clarificar y compartir los objetivos de aprendizaje y los criterios de éxito.
2. Obtener información clara sobre el aprendizaje del alumno a través de distintas formas de evaluación (sean formales o informales como, por ejemplo, a través de debates en el aula, cuestionarios o tareas concretas de aprendizaje).
3. Suministrar feedback formativo a los alumnos para apoyar su aprendizaje.
4. Promover la enseñanza entre compañeros y la coevaluación.
5. Fomentar la autonomía del alumno en el aprendizaje a través de la autoevaluación y la autorregulación.
Para saber más:
Heitink M. C. et al. (2016): “A systematic review of prerequisites for implementing assessment for learning in classroom practice”. Educational Research Review 17, 50-62.

8. Memoria
Dejando aparte los sucesos emocionales que se graban en nuestro cerebro de forma más directa, en situaciones normales (o si se quiere, menos emotivas) disponemos de distintos tipos de memoria que activan diferentes regiones cerebrales. En el aula es especialmente importante la memoria explícita, la cual requiere un enfoque más asociativo en el que la reflexión, la comparación y el análisis adquieren un gran protagonismo.
Las investigaciones demuestran que cuando se distribuye la práctica en el tiempo, los estudiantes aprenden mejor y tienen más tiempo para reflexionar sobre lo que están aprendiendo. Y, además, constituye una estupenda forma de optimizar la motivación de logro y combatir el aburrimiento que pudiera ocasionar la repetición de una tarea cuando no existe la necesaria variedad en la misma. Junto a ello, se ha comprobado que cada vez que intentamos recordar modificamos nuestra memoria y este proceso de reconstrucción del conocimiento tiene una gran incidencia en el aprendizaje, tanto el asociado a hechos concretos como a inferencias. Esta técnica se puede incorporar fácilmente en el aula durante el desarrollo de la unidad didáctica a través de pequeños cuestionarios utilizando, por ejemplo, recursos digitales conocidos.
Para saber más:
Dunlosky J., et al. (2013): “Improving students’ learning with effective learning techniques: promising directions from cognitive and educational psychology”. Psychological Science in the Public Interest 14(1), 4-58.

9. Metacognición
La metacognición nos permite valorar nuestros propios pensamientos. Hace que seamos conscientes de las estrategias que seguimos al resolver problemas, y que evaluemos la eficacia de las mismas para poder cambiarlas si no dieran el resultado deseado. Diversos estudios muestran la importancia de que el estudiante se plantee preguntas durante las tareas de aprendizaje que le permitan explicarse y reflexionar sobre lo que está haciendo, intentando relacionar los nuevos conocimientos con los previos.
Se ha comprobado la utilidad de realizar descansos durante el estudio para reflexionar sobre el propio aprendizaje. También resulta interesante reforzar la conciencia del propio conocimiento creando palabras clave. Cuando se les pide a los estudiantes que generen unas pocas palabras que resuman un tema concreto mejoran su metacognición y distribuyen mejor su tiempo de estudio. Asimismo, la meditación parece mejorar también la metacognición.
Para saber más:
Diamond A., Ling D. S. (2016): “Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not”. Developmental Cognitive Neuroscience 18, 34-48.

10. Impacto del aprendizaje
Una unidad didáctica no debería terminar cuando se cumple el plazo temporal previsto sino cuando el profesor analiza cuál ha sido el impacto sobre el aprendizaje del alumno en relación a los objetivos y los criterios de éxito inicialmente identificados. Porque lo verdaderamente necesario es garantizar el aprendizaje de todos y, en el caso de no producirse, ser flexible y cambiar las estrategias de enseñanza cuando sea necesario.
La esencia del aprendizaje radica en poder aplicar lo que hemos aprendido en un determinado contexto a otros nuevos contextos. Esa transferencia tan importante que hace que los estudiantes tomen las riendas de su propio aprendizaje puede favorecerse a través de la metacognición, la diversificación de las tareas de aprendizaje, el uso de analogías y diferencias, metáforas,…, en definitiva, a través de la práctica. Pero una práctica que tiene sentido y significado para la vida del estudiante y en la que el feedback frecuente es un elemento imprescindible para fomentar su autorregulación. Por eso es interesante permitir a los estudiantes explorar sus propios intereses a través de nuevos problemas o proyectos que conecten con su aprendizaje previo.
Para saber más:
Hattie J. (2015): “The applicability of visible learning to higher education”. Scholarship of Teaching and Learning in Psychology 1(1), 79–91.

En la práctica, uno de los grandes retos educativos es el de permitir que los profesores trabajen de forma cooperativa analizando el aprendizaje y convirtiéndolo en un proceso de investigación real. Porque es muy importante conocer qué prácticas educativas son útiles pero también conocer las razones por las que son útiles y así poder adaptarlas al contexto concreto del aula. En eso consiste la neuroeducación, en educar con cerebro para mejorar los procesos de enseñanza y aprendizaje. Sin olvidar el corazón.
Jesús C. Guillén

El tercer profesor: espacios que guían el aprendizaje

29 septiembre, 2017 2 comentarios

En las escuelas21 el espacio educa, se dirige a facilitar el aprendizaje. El diseño inteligente del espacio representa a un nuevo docente en el siglo XXI. Los espacios nos configuran y nos definen. Son, al lado de alumnos y educadores, el tercer profesor.

Alfredo Hernando

Somos conscientes de las nuevas necesidades educativas en los tiempos actuales. Buscar alternativas curriculares, metodológicas o vinculadas a la evaluación resulta imprescindible para atender de forma adecuada la diversidad del alumnado. Como lo es plantearse cuál ha de ser el rol del profesorado y del alumnado en una educación en pleno siglo XXI. Relacionado con esto último, la neurociencia ha demostrado la incidencia directa de las emociones en el aprendizaje. Pero si importante resulta el clima emocional en el aula, también lo es el entorno físico en el que se da el aprendizaje porque afecta a nuestro cerebro. La arquitectura, el diseño y las condiciones físicas de los espacios en los centros escolares son más importantes de lo que creíamos en el proceso de innovación educativa (ver figura 1). Y pueden vinculares a otros factores críticos en la transformación educativa, como los metodológicos. Como dice Rosan Bosch: “El objetivo no es crear espacios bonitos, sino que contribuyan al cambio”.

Figura 1

En nuestro cerebro existen neuronas específicas que identifican la situación en un entorno particular y, junto a estas, otras que nos permiten crear una imagen mental de los alrededores y que constituyen una especie de GPS cerebral. Los patrones de organización de algunas de estas neuronas pueden verse influenciados por la forma del espacio externo. Y si el contexto en el que nos desenvolvemos tiene una incidencia en la esfera neuronal, también parece tenerlo en el nivel cognitivo, emocional o conductual. A continuación analizamos algunos factores que pueden afectar a estos procesos.

Mobiliario
Según las investigaciones realizadas por Nair (2016), el diseño adecuado de un edificio escolar es aquel que le dota de un aspecto variable en función de las necesidades educativas de los estudiantes. Ello requiere la existencia de distintos espacios de aprendizaje como estudios, talleres o laboratorios que faciliten tanto el trabajo individual como el cooperativo, e incluso una enseñanza más formal en algunos momentos, pero siempre desde una perspectiva interdisciplinar. Difícilmente la tradicional distribución de sillas y mesas en filas y columnas orientadas hacia el profesor van a promover el trabajo cooperativo (qué bueno también que existan espacios en los que pueda cooperar el profesorado; ver figura 2) y, en definitiva, un aprendizaje en el que el alumnado sea un protagonista activo del mismo. Para ello resulta imprescindible disponer del necesario mobiliario móvil. Esta movilidad no se limita al entorno propio de aprendizaje (qué bueno cambiarlos con frecuencia). Por ejemplo, y en consonancia con lo que sabemos sobre los beneficios cognitivos asociados al movimiento, se ha comprobado que el uso de escritorios de pie conlleva mejoras en pruebas que miden el funcionamiento ejecutivo del alumnado, como en el caso de la memoria de trabajo (Mehta et al., 2016). Y, por supuesto, constituyen una estupenda forma de combatir los comportamientos sedentarios durante la jornada escolar.

Figura 2

Iluminación
Las aulas que posibilitan vistas externas y están iluminadas de forma adecuada con luz natural pueden incidir positivamente en el bienestar físico y emocional del alumnado, e incluso favorecer su concentración en las tareas. En un estudio en el que participaron más de 21 000 estudiantes, aquellos que estudiaron con mayor iluminación obtuvieron, respecto a los alumnos que estudiaron en condiciones lumínicas más pobres, unos resultados un 20 % por encima de ellos en matemáticas, y un 26 % por encima en pruebas lectoras (Heschong Mahone Group, 1999; ver figura 3).

Figura 3

Los mismos investigadores corroboraron también los efectos negativos sobre el aprendizaje, derivados del deslumbramiento en las aulas que no disponían de persianas o filtros adecuados. Para cumplir las condiciones de buena iluminación sin deslumbramiento, son muy útiles las ventanas grandes que no reciban directamente la luz solar, lo cual ocurre, en el hemisferio norte, cuando están orientadas hacia cualquier dirección que no sea el sur. Y si los alumnos realizan las tareas académicas en aulas con ventanas abiertas que dan a espacios verdes, mejora su atención ejecutiva mientras las hacen (Li y Sullivan, 2016; ver figura 4).

Figura 4

Temperatura, ventilación y sonido
Nuestro cerebro es muy sensible a la temperatura y ello puede repercutir tanto a nivel cognitivo como emocional. Por ejemplo, las investigaciones de Lewinski (2015) sugieren que un rango de temperatura que podría favorecer el aprendizaje estaría entre los 20 ºC y los 23 ºC, aproximadamente, y que la humedad relativa debería rondar el 50 %. Relacionado con esto, se ha constatado una mejora en los resultados de pruebas numéricas y lingüísticas realizadas por estudiantes preadolescentes cuando se reduce la temperatura de 25 ºC a 20 ºC y se incrementa la ventilación (Wargocki y Wyon, 2007). Y resultados muy parecidos a estos se han obtenido en un estudio más reciente (Haverinen y Shaughnessy, 2015; ver figura 5).

Figura 5

En lo referente a la ventilación, sabemos que la mejora de la calidad del aire interior puede reducir ostensiblemente los efectos del asma que afecta a tantos millones de niños en el mundo (Mau, 2010). Y más sabiendo que pasan muchas horas diarias en espacios interiores. En un estudio longitudinal en el que han participado 2618 niños de 39 escuelas de Barcelona, se ha constatado que la contaminación del aire procedente del tráfico puede perjudicar el correcto desarrollo cognitivo de los niños (Basagaña et al., 2016).
En cuanto a las cuestiones sonoras, es evidente que el ruido puede afectar el desempeño en las tareas del alumnado. Por ejemplo, se ha comprobado que en el caso de los más pequeños puede perjudicar los procesos de atención visual, escritura o lectura, debido a su falta de desarrollo ejecutivo. En cuanto a los adolescentes, recuerdan peor la información cuando están expuestos a niveles sonoros que simulan situaciones cotidianas (Ferguson et al., 2013). Ello sugiere la necesidad de disponer de entornos de aprendizaje específicos (ver figura 6), tal como comentábamos al inicio. Sin olvidar que el sonido puede modularse variando la altura de los techos, utilizando paneles acústicos, moquetas, etc.

Figura 6

Color y decoración
Los estudios sobre el color en los entornos de aprendizaje revelan su incidencia sobre las personas que permanecen en ellos. Por ejemplo, a nivel emocional. Colores fuertes, como el rojo, suelen afectar en mayor grado a personas introvertidas o a las que tienen un estado de ánimo negativo (Kúller et al., 2009).
En el contexto concreto del aula, parece que una combinación de paredes blancas o claras con accesorios (muebles, pantallas, pósteres, etc.) de colores brillantes puede estimular el aprendizaje (ver figura 7). En la práctica, siempre podemos utilizar tonos alegres en distintos elementos del aula para mejorar la estética y fomentar un trabajo más creativo, aunque la elección del color no solo dependerá de las necesidades de las tareas sino también de la edad del alumnado. En el caso de los más pequeños, los colores primarios pueden resultar excesivamente estimulantes (se pueden dejar para escaleras o pasillos). En lo referente a la decoración general del aula, parece que los efectos más beneficios se producen cuando existe un nivel de estimulación intermedio entre una decoración excesiva y una nula (Barret et al., 2017).

Figura 7

La escuela del siglo XXI
Está claro que la escuela del siglo XXI ha de poder cubrir las necesidades educativas y sociales actuales. En consonancia con lo que plantea Nair (2016), un centro educativo bien diseñado cumple cuatro criterios imprescindibles:
• Es acogedor. El diseño del edificio condiciona el comportamiento de los estudiantes.
• Es versátil. Más allá de la creación de espacios flexibles, el centro escolar ha de proporcionar ambientes capaces de atender la diversidad del alumnado.
• Facilita múltiples escenarios educativos. Es muy importante que en la escuela existan zonas que permitan una amplia variedad de tareas educativas, incluso zonas comunes de uso flexible.
• Traslada mensajes positivos. El diseño del espacio educativo ha de favorecer la creación de climas emocionales positivos, algo que resulta necesario en el aprendizaje.
Qué importante resulta que las aulas puedan convertirse en espacios multidisciplinares abiertos que garanticen diferentes tipos de tareas y faciliten un aprendizaje activo en el que la incorporación de los recursos digitales, la cooperación y la vinculación al mundo real (ver figura 8) sean componentes esenciales. Y que puedan integrarse con naturalidad la educación física, la emocional, la artística y la científica, disciplinas tradicionalmente consideradas como antagónicas pero cuya vinculación resulta necesaria en una educación integral de la persona. Cuando se produce este proceso cooperativo a todos los niveles, que está en consonancia con los códigos de funcionamiento de nuestro cerebro, se estimula la curiosidad, la creatividad y el aprendizaje de todo el alumnado, mejorando así su sentido de pertenencia y bienestar. Y es que la arquitectura de los espacios de aprendizaje deja huella en la arquitectura de nuestro cerebro.
Jesús C. Guillén

Figura 8

Referencias:
1. Barrett P. S. et al. (2017): “The holistic impact of classroom spaces on learning in specific subjects”. Environment and Behavior 49(4), 425-451.
2. Basagaña X. et al. (2016): “Neurodevelopmental deceleration by urban fine particles from different emission sources: a longitudinal observational study”. Environmental Health Perspectives 124(5).
3. Ferguson K. T. et al. (2013): “The physical environment and child development: An international review”. International Journal of Psychology 48(4), 437-468.
4. Haverinen-Shaughnessy U. y Shaughnessy R. J. (2015): “Effects of classroom ventilation rate and temperature on students’ test scores”. PLoS One 10 (8).
5. Heschong Mahone Group. (1999). Daylighting in schools. Fair Oaks, CA: Pacific Gas and Electric.
6. Küller R. et al. (2009): “Color, arousal, and performance. A comparison of three experiments”. Color Research & Application 34(2), 141-152.
7. Lewinski P. (2015): “Effects of classrooms’ architecture on academic performance in view of telic versus paratelic motivation: a review”. Frontiers in Psychology 6 (746).
8. Li D., Sullivan W. C. (2016): “Impact of views to school landscapes on recovery from stress and mental fatigue”. Landscape and Urban Planning 148, 149-158.
9. Mau, Bruce (2010). The third teacher: 79 ways you can use design to transform teaching & Learning. New York: Harry N. Abrams, Inc.
10. Mehta R. K., Shortz A. E., Benden M. E. (2016): “Standing up for learning: a pilot investigation on the neurocognitive benefits of stand-biased school desks”. International Journal of Environmental Research and Public Health 13(1): 59.
11. Nair, Prakash (2016). Diseño de espacios educativos: Rediseñar las escuelas para centrar el aprendizaje en el alumno. SM.
12. Wargocki P. & Wyon D. P. (2007): “The effects of moderately raised classroom temperatures and classroom ventilation rate on the performance of schoolwork by children”. HVAC&R Research 13 (2), 193-220.

 

Neuroeducación en el aula: De la teoría a la práctica

¿Cómo no sorprenderse al leer sobre la inmensa cantidad de neuronas, las miles de sinapsis, las decenas de regiones cerebrales y sus funciones? ¿Cómo no volver a nuestra infancia y quedar con los ojos abiertos al comprender que cada pensamiento, que cada mirada, que cada frase liberada al viento está relacionada con un tendido eléctrico cerebral? ¿Cómo hacer para mantenerse al margen de tal avance científico sin intentar ligarlo a toda nuestra conducta?

Fabricio Ballarini

Nos complace informaros que esta misma semana se publica el libro Neuroeducación en el aula. De la teoría a la práctica, que encontraréis tanto en el formato físico como en el digital en Amazon (mil gracias a Alexia Jorques por la estupenda portada y maquetación y a Xavier Torras por la genial corrección del texto), y que con tanto entusiasmo hemos ido dándole forma en los últimos tiempos. El prólogo está escrito por el gran neurocientífico –y magnífico divulgador– Fabricio Ballarini, quien ha realizado recientemente unas investigaciones apasionantes sobre el efecto de la novedad en la consolidación y transformación de las memorias a corto plazo en las memorias a largo plazo.

Hemos intentado abordar de forma natural y con un lenguaje divulgativo –similar al que utilizamos en Escuela con Cerebro– el enfoque integrador y transdisciplinar que constituye la neuroeducación (ver figura), haciendo confluir la teoría con la práctica. Como siempre comentamos, en el fondo, este nuevo paradigma educativo consiste en acercar la ciencia al aula para que los profesores sepamos realmente qué intervenciones inciden positivamente en el aprendizaje del alumnado y cuáles son las causas por las que lo hacen, a fin de que se puedan poner en práctica en distintos contextos educativos.

En Neuroeducación en el aula. De la teoría a la práctica encontraréis algunas de las evidencias empíricas más significativas que apoyan una auténtica enseñanza basada en el cerebro, la cual, qué duda cabe, es aquella que mejora lo verdaderamente importante: el aprendizaje de cada alumno. O si se quiere, la que nos permite aprender con todo nuestro potencial.

A pesar de que muchas de las estrategias propuestas se analizan en el entorno particular del aula, pueden generalizarse y adaptarse a otros muchos contextos educativos. Porque la educación no se restringe a la escuela, y porque el concepto de aula como espacio de aprendizaje obliga a una comprensión más amplia en los tiempos actuales.

Además de identificar algunos de los avances más significativos que proceden de las ciencias cognitivas, analizamos muchas implicaciones educativas que son muy fáciles de poner en práctica y que pueden adaptarse, en su gran mayoría, a todas las etapas educativas. Siempre desde una perspectiva abierta y crítica que nos invite a reflexionar y, en algunos casos, a mejorar las estrategias pedagógicas en el aula. Sin olvidar que la ciencia es una fuente inagotable de suministro de pruebas que está en continua evolución. No es casualidad que, entre el total de las referencias bibliográficas –más de trescientas–, la gran mayoría de citas que encontraréis correspondan a estudios realizados esta misma década, y que casi la mitad de estos sean de los dos últimos años.

Los diferentes contenidos analizados y sus correspondientes implicaciones educativas y aplicaciones prácticas están relacionados con los factores críticos que hemos identificado estos años en Escuela con Cerebro y que creemos que son imprescindibles para un aprendizaje en, desde y para la vida (ver índice). ¿Influyen las emociones en el aprendizaje? ¿Es posible mejorar la atención? ¿Cómo podemos hacer un uso adecuado de la memoria? ¿Si jugamos, aprendemos? ¿Son importantes las artes en la educación? ¿Es necesario apostar por un aprendizaje activo? ¿Necesitamos cooperar? Estas y otras muchas preguntas nos las planteamos sin la necesidad de buscar soluciones únicas porque asumimos que lo más importante es disfrutar el proceso de aprendizaje y sugerir nuevas preguntas que estimulen la curiosidad por el mismo.

En una verdadera Escuela con Cerebro – y con Corazón–  todos los niños y adolescentes son bienvenidos y aprenden juntos siendo diferentes. La neuroeducación constituye una nueva mirada, flexible, positiva, optimista, porque está en consonancia con diversas metodologías de aprendizaje activo y porque fomenta el desarrollo de competencias para la vida; o, mejor dicho, es la propia vida.

Te agradecemos a ti, que estás leyendo estas líneas, que nos acompañes en este proceso de transformación y mejora educativa y social. Porque, efectivamente, somos conscientes que una nueva educación –y una mejor sociedad– es necesaria y posible. Pero ello requiere una implicación colectiva en el proceso. Nuestros cerebros tremendamente plásticos y sociales agradecen este tipo de retos. ¿Brindas por el cambio?

Jesús C. Guillén

Cerebros hiperactivos en el aula: algunas estrategias neuroeducativas

El TDAH es mucho más que un problema de atención, hiperactividad o impulsividad. Es un trastorno del sistema ejecutivo del cerebro, un sistema que es esencial para el buen funcionamiento en la escuela y en la mayor parte de situaciones cotidianas.

Russell Barkley

Cuando preguntamos a padres de niños con TDAH (trastorno por déficit de atención con o sin hiperactividad), o a docentes con alumnos a los que se les ha diagnosticado este trastorno, suelen utilizar frases como las siguientes para describir el comportamiento de los hijos o estudiantes: “Se mueve continuamente, se distrae con facilidad, no para de hablar, es desordenado, nunca acaba las tareas, olvida lo que tiene que hacer, obtiene malos resultados académicos, etc.” Curiosamente, estos mismos niños o adolescentes son capaces de estar concentrados durante periodos de tiempo prolongados jugando a su videojuego favorito y pueden desenvolverse de forma extraordinaria en tareas extraescolares muy alejadas de situaciones académicas de estrés continuo a las que están expuestos con frecuencia. Porque las dificultades cognitivas que persisten en el tiempo, las críticas o la sensación de que no resuelven las cosas como se espera pueden provocar, por ejemplo, ansiedad o un autoconcepto negativo. Y ello puede interferir en las interacciones sociales. ¿Podemos hacer los adultos algo al respecto? Asumiendo una mentalidad de crecimiento real, seguro que sí. Y mucho, tanto en casa como en la escuela, que es donde nos centraremos específicamente.

El cerebro en el TDAH

Sabemos que el TDAH se manifiesta con síntomas de inatención, hiperactividad o una combinación de ambos –tiene una gran comorbilidad con otros trastornos o déficits de aprendizaje–, es congénito y persiste en la edad adulta en el 65% de los casos (Hart et al., 2013).

No existe un biomarcador que permita detectarlo sino que el diagnóstico –si es completo será complejo– lo realiza el médico a partir de entrevistas, cuestionarios, escalas de evaluación o exploraciones físicas que le permitan descartar otras razones, y para su tratamiento se utilizan medicamentos psicoestimulantes (el famoso Concerta) junto a terapias cognitivo-conductuales. Estos medicamentos tienen una estructura química similar a la anfetamina y actúan sobre los neurotransmisores de la corteza prefrontal inhibiendo su recaptación, con lo que llegan a reducirse los síntomas del trastorno en el 70 % de los casos, aunque sus procesos de acción no son del todo conocidos (Rubia et al, 2014), al igual que sus efectos sobre la salud a más largo plazo.

En los últimos años, los estudios con neuroimágenes han identificado algunas de las particularidades que caracterizan a los cerebros de los niños y adolescentes con TDAH. Una investigación reciente (Hoogman et al., 2017) en la que han participado 1713 personas con TDAH y una media de edad de 14 años, frente a 1529 integrantes del grupo de control, ha revelado que el tamaño del cerebro de las personas con TDAH es menor, en concreto en regiones subcorticales (ver figura 1) como el núcleo accumbens (recompensa), la amígdala (procesamiento emocional) o el hipocampo (memoria). Esto no significa que los niños con TDAH sean menos inteligentes sino que los problemas que manifiestan están asociados a una estructura cerebral diferente.

Estudios anteriores habían identificado en personas con TDAH alteraciones en los circuitos que conectan la corteza prefrontal –sede de las funciones ejecutivas– con áreas emocionales y motoras, como los ganglios basales y el cerebelo, lo que justificaría la mayor dificultad que muestran los estudiantes con TDAH para inhibir los impulsos (Hart et al., 2013; ver figura 2).

También se han identificado niveles más bajos de dopamina en algunas regiones del sistema de recompensa cerebral, como en el núcleo accumbens (Volkow et al, 2011), lo cual explicaría la mayor necesidad de estimulación que tienen los niños con TDAH. Y junto a los estudios de neuroimagen, la evaluación neuropsicológica ha identificado un perfil muy heterogéneo de alteraciones cognitivas asociadas a la memoria de trabajo, el control inhibitorio, la planificación o la detección y corrección de errores, entre otras muchas. Sin olvidar los déficits motivacionales observados en estos niños que les dificulta aplazar la recompensa pero que no les impide ejecutar mejor tareas que les interesan. Y son la baja tolerancia a la demora, junto a las dificultades en el control inhibitorio, dos de los primeros signos que predicen el trastorno. Lo cual es muy importante porque la detección temprana del TDAH en las primeras etapas educativas es necesaria para intervenir y disminuir su prevalencia en etapas posteriores (Rueda et al., 2016a).

Existen pues evidencias sólidas que muestran que el TDAH es una alteración del desarrollo de origen biológico y que las conductas observadas son el resultado de estas anomalías. Aunque un entorno familiar desorganizado o un currículo escolar inadecuado pueden amplificar esas conductas.

En la práctica

La pregunta que nos planteamos los educadores es cómo podemos optimizar el potencial de los niños y adolescentes con TDAH para que disfruten y aprovechen realmente el proceso de aprendizaje. Pues bien, existen algunas estrategias que están en consonancia con los planteamientos que proponemos desde la neuroeducación y que también nos pueden ayudar a mejorar la atención y el funcionamiento ejecutivo de todo el alumnado. Pero antes, escuchemos a Michael Posner, un referente mundial en el estudio de la atención:

Bueno para el corazón, bueno para el cerebro

A los niños y a los adolescentes –también a los adultos– les cuesta focalizar la atención en las tareas durante periodos de tiempo prolongados, un hecho que se amplifica en aquellos estudiantes con TDAH. En general, el ejercicio puede ser un buen antídoto para mejorar la concentración durante las tareas. Por ejemplo, con parones durante las clases para realizar unos movimientos de cierta intensidad (Ma et al., 2015) o iniciando la jornada escolar dedicando unos minutos -15 o 20- a una actividad aeróbica moderada (Stylianou et al., 2016). Y se ha comprobado que los niños con TDAH –a diferencia del resto– resuelven mejor pruebas cognitivas en las que interviene la memoria de trabajo cuando se les permite moverse (Sarver et al., 2015; ver figura 3).

En consonancia con este enfoque activo del aprendizaje que está muy alejado de la enorme cantidad de horas que pasan los estudiantes sentados en una situación pasiva, los estudios parecen sugerir la necesidad de cambiar con frecuencia los entornos de aprendizaje. Y nada mejor para los estudiantes con TDAH que puedan moverse o jugar en plena naturaleza. Un simple paseo por un entorno natural de unos 20 minutos puede combatir la fatiga mental que les provoca la atención focalizada (Taylor y Kuo, 2009). Qué importante para el cerebro y el aprendizaje es abrir las puertas del aula y la escuela a la realidad cotidiana y a la naturaleza (ver figura 4).

La actividad física y el deporte –especialmente los colectivos, en los que hay que tomar decisiones continuas en un contexto social– constituyen un buen entrenamiento de las funciones ejecutivas. Pero en el caso de los estudiantes con TDAH, todavía puede ser mejor cuando se combina con una mayor actividad mental, como en el caso de las artes marciales. Este tipo de deportes constituyen un reto, tanto para el cerebro como para el cuerpo, porque en ellos confluyen movimientos específicos que requieren una buena concentración para su aprendizaje. Por ejemplo, un programa de taekwondo de 3 meses de duración aplicado en la etapa de primaria provocó progresos en la autorregulación de los niños que posibilitaron mejoras, tanto conductuales como académicas (Lakes y Hoyt, 2004).

Respiro y siento

La práctica regular del mindfulness fortalece circuitos cerebrales que intervienen en los procesos atencionales. De ello se puede beneficiar cualquier estudiante, especialmente aquellos con TDAH. Un programa de mindfulness de 8 semanas de duración en el que intervinieron niños con edades entre los 8 y los 12 años, junto a sus padres, produjo mejoras significativas en el entorno familiar, especialmente en los síntomas relacionados con la falta de atención –de forma moderada en los síntomas asociados a la hiperactividad (Van der Oord et al., 2012).

Técnicas como el mindfulness ayudarán al estudiante a mejorar su concentración y a combatir el estrés, por ejemplo. Pero su mayor utilidad se da cuando se integran estas estrategias en los programas de educación emocional. Y con ellos, a los niños y a los adolescentes se les enseñan estrategias que facilitan la mejora de su diálogo interno, la resolución de problemas o la organización de las tareas, por ejemplo. Cuando van aprendiendo competencias interpersonales básicas relacionadas con la toma de decisiones, la comunicación, la solidaridad, el respeto o la resolución de conflictos, ya podrán cooperar realmente en el aula. Se ha comprobado que el trabajo cooperativo puede resultar muy beneficioso para el alumnado con TDAH (DuPaul y Stoner, 2014), especialmente en pequeños grupos y cuando enseñan a otros compañeros (tutoría entre iguales). Además, eso contribuye a generar un clima emocional positivo. Esto también es muy importante para los estudiantes con TDAH porque, en muchas ocasiones, son penalizados por la falta de precisión en los resultados finales de las tareas haciendo un esfuerzo superior al de sus compañeros. ¡Qué importante es relativizar los errores con sentido del humor!

Visuales y juguetones

En los últimos años, desde la neurociencia, se han utilizado programas de entrenamiento cognitivo, generalmente informatizados, que inciden en las regiones cerebrales que sustentan las distintas redes atencionales. Por ejemplo, a través de ejercicios que fomentan la focalización atencional y la discriminación perceptual (Rueda et al., 2016b). En especial, la importante atención ejecutiva, que los estudios longitudinales demuestran que contribuye al rendimiento académico del alumnado. Además, se ha comprobado que los videojuegos de acción inciden positivamente en el funcionamiento ejecutivo cerebral mejorando la agudeza visual, la flexibilidad cognitiva o las redes atencionales orientativa y ejecutiva (Green y Bavelier, 2015; ver figura 5). ¿Se pueden utilizar este tipo de estrategias en el caso del TDAH? Pues parece que sí. En un estudio holandés, niños de 11 años con TDAH realizaron un entrenamiento de la atención durante ocho sesiones de una hora. Jugaban a un videojuego en el que tenían que advertir la presencia de robots enemigos sin olvidar que debían impedir que la energía de su avatar bajara de un cierto umbral. Los niños que recibieron ese entrenamiento, tras cuatro semanas, mejoraron varios parámetros atencionales, entre ellos la capacidad de concentrarse pese a las distracciones, y no solo mientras jugaban (Tucha et al., 2011).

Asimismo, hay niños con TDAH que tienen problemas con la escritura como consecuencia de dificultades en la coordinación motora. En estos casos será muy beneficioso la utilización de determinados programas informáticos que posibilitan formas de expresión alternativas. Y no solo en los problemas de lectoescritura –tan comunes en los niños con TDAH porque muchos de ellos también son disléxicos– sino que, en general, la utilización de audiovisuales constituye una estupenda estrategia educativa ya que contextualiza la información y reduce la carga de la misma que reciben.

Los aspectos motivacionales son básicos en el aprendizaje y más en niños con TDAH porque pierden el interés por las tareas más rápidamente. Juegos como el ajedrez, actividades manuales, puzles y otros juegos creados de forma informal por los propios niños pueden optimizar su atención. Al igual que actividades artísticas como el baile, la música o el teatro porque requieren control motor, emocional y cognitivo. Y la realización de tareas o proyectos vinculados a situaciones reales siempre despertará la curiosidad más fácilmente vinculando el aprendizaje a cuestiones concretas, alejándonos de las típicas tareas académicas tantas veces abstractas y descontextualizadas.

En el fragor de la batalla

Los niños con TDAH se distraen con facilidad y les cuesta más manipular la información mentalmente debido a déficits en la memoria de trabajo. Por ello –en consonancia con lo que comentábamos en el apartado del movimiento– resulta muy útil dividir las tareas en otras más pequeñas y realizar los correspondientes parones entre las mismas. Eso también se puede hacer en exámenes escritos (una hora es una eternidad para estos estudiantes). Y las dificultades para manipular mentalmente la información pueden compensarse si se les permite convertir la resolución de problemas en algo manual, un enfoque cuya utilidad ya comentábamos en un artículo anterior sobre la cognición corporizada.

Una estrategia interesante para combatir la dificultad para aplazar las recompensas que manifiestan los niños con TDAH es mediante lo que se conoce como intenciones de implementación. Suelen tomar la forma de proposiciones del tipo “si X entonces Y” y sirven para planificar con antelación, como en el caso siguiente: “si me llama mi amiga Cristina le diré que no puedo ir al cine porque tengo que estudiar”. La práctica continuada de este tipo de estrategias posibilita a los niños con TDAH automatizar las respuestas sin tanto esfuerzo cognitivo. Y este aprendizaje les permite desenvolverse mejor en tareas ejecutivas, como algunas asociadas al control inhibitorio (Gawrilow et al., 2011). Todo en consonancia con el aprendizaje emocional que comentábamos anteriormente y que asumimos en Escuela con Cerebro como esencial.

El cerebro hiperactivo es un maestro de la procrastinación, aunque le encanten los desafíos iniciales que suponen las tareas. Terminar el trabajo en el aula puede representar un éxito para el maestro pero no para el estudiante con TDAH. En estos casos, se ha comprobado que resulta beneficioso utilizar recompensas inmediatas al acabar las tareas asignadas. Pero ello requiere una supervisión del adulto y suministrar un feedback frecuente e inmediato. Premiar las conductas adecuadas se puede hacer elogiando, animando, o suministrando ciertos privilegios. Pero siempre de forma personal, breve y precisa (Barkley, 2016). Una mano tendida en el hombro mejora mucho el exceso de comunicación oral al que estamos acostumbrados los docentes. La necesidad de las consecuencias inmediatas hace muy útil que el niño vaya informando de forma continuada sobre el trabajo que está realizando. En este sentido, los contratos conductuales en los que se explicita de forma clara los objetivos del trabajo y las consecuencias del mismo pueden ser muy útiles.

Conclusiones

Desde la perspectiva neuroeducativa se asume con naturalidad la importancia del movimiento, el juego, el arte y las emociones. Porque este enfoque es el que va a favorecer un mejor desarrollo cerebral. O si se quiere, es el que nos va a permitir trabajar de forma adecuada esas funciones cognitivas complejas que son necesarias para un buen desarrollo académico, pero también para el crecimiento personal del alumnado: las funciones ejecutivas. A través de una adecuada educación emocional –que en el aula parte de la formación del profesorado y que en casa depende de las familias–, podremos generar la necesaria mentalidad de crecimiento, que está en consonancia con lo que sabemos sobre el cerebro, plástico y en continua reorganización tanto funcional como estructural. No podemos seguir etiquetando y estigmatizando el comportamiento de tantos niños y adolescentes con todos los problemas que les acarreamos. En el caso del TDAH, son nuestras expectativas negativas las que, en muchas ocasiones, generan en la práctica los conflictos. Cuando se asumen con naturalidad las diferencias, las aulas son inclusivas y las escuelas abren las puertas a toda la comunidad educativa y a la sociedad. Así ganamos todos.

Jesús C. Guillén

.

Referencias:

  1. Barkley, Russell (2016). Managing ADHD in school: the best evidence-based methods for teachers. Eau Claire: PESI Publishing & Media.
  2. DuPaul G. J. y Stoner G. (2014). ADHD in the schools: assessment and intervention strategies. Nueva York: The Guilford Press.
  3. Gawrilow C., Gollwitzer P. M., y Oettingen G. (2011): “If-then plans benefit delay of gratification performance in children with and without ADHD”. Cognitive Therapy and Research, 35, 442–455.
  4. Green C. S. y Bavelier D. (2015): “Action video game training for cognitive enhancement”. Current Opinion in Behavioral Sciences 4, 103-108.
  5. Hart H. et al. (2013): “Meta-analysis of fMRI studies of inhibition and attention in ADHD: Exploring task-specific, stimulant medication and age effects”. JAMA Psychiatry 70, 185–198.
  6. Hoogman M. et al. (2017): “Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis”. Lancet Psychiatry 4(4), 310-319.
  7. Lakes K. D. y Hoyt W. T. (2004): “Promoting self-regulation through school-based martial arts training”. Applied Developmental Psychology 25, 283–302.
  8. Ma J. K. et al. (2015): “Four minutes of in-class high-intensity interval activity improves selective attention in 9- to 11-year olds”. Applied Physiology Nutrition and Metabolism 40, 238-244.
  9. Rubia K. et al. (2014): “Effects of stimulants on brain function in attention-deficit/hyperactivity disorder: a systematic review and meta-analysis”. Biological Psychiatry 76(8), 616-628.
  10. Rueda M. R. et al. (2016a): “Neurociencia cognitiva del desarrollo”. En Mente y cerebro: de la psicología experimental a la neurociencia cognitiva. Madrid: Alianza Editorial.
  11. Rueda M. R., Conejero A. y Guerra S. (2016b): “Educar la atención desde la neurociencia”. Pensamiento Educativo. Revista de Investigación Educacional Latinoamericana 53(1), 1-16.
  12. Sarver D. E. et al. (2015): “Hyperactivity in attention-deficit/hyperactivity disorder (ADHD): Impairing deficit or compensatory behavior?” Journal of Abnormal Child Psychology 43(7), 1219-1232.
  13. Stylianou M. et al. (2016): “Before-school running/walking club: effects on student on-task behavior”. Preventive Medicine Reports 3, 196-202.
  14. Taylor A.F. y Kuo F.E. (2009): “Children with attention deficits concentrate better after walk in the park”. Journal of Attention Disorders 12, 402–409.
  15. Tucha O. et al. (2011): “Training of attention functions in children with attention deficit hyperactivity disorder”. ADHD Attention Deficit and Hyperactivity Disorders 3(3), 271-283.
  16. Van der Oord S., Bögels S. M., Peijnenburg D. (2012): “The effectiveness of mindfulness training for children with ADHD and mindful parenting for their parents”. Journal of Child and Family Studies 21, 139-147.
  17. Volkow N. D. et al. (2011): “Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway”. Molecular Psychiatry 16(11), 1147-54.

 

Categorías:Neurodidáctica Etiquetas: , ,

La conexión cuerpo y cerebro en el aprendizaje

El cuerpo y el cerebro se hallan inmersos en una danza interactiva continua. Los pensamientos que son implementados en el cerebro pueden inducir estados emocionales que son implementados en el cuerpo, mientras que el cuerpo puede cambiar el paisaje del cerebro y, de este modo, el sustrato que sustenta los pensamientos.

Antonio Damasio

A diferencia de lo que creíamos años atrás, el cuerpo no es simplemente un aparato de comunicación bidireccional para el cerebro, sino que desempeña un papel crucial en los procesos cognitivos (cognición corporizada). O si se quiere, los sistemas sensoriales y motores que gobiernan el cuerpo están enraizados en los procesos cognitivos que nos permiten aprender. Giacomo Rizzolatti -el descubridor de las neuronas espejo- lo resume muy bien: “El cerebro que actúa es un cerebro que comprende”. Las implicaciones educativas son enormes porque, además, el aprendizaje es un proceso social. ¡Dichosas neuronas espejo!

El poder del movimiento

Las investigaciones sugieren que el ejercicio constituye una estupenda estrategia para mantener una buena salud física, pero también mental. La actividad física incrementa los niveles de la proteína BDNF que está asociada a la mejora de la plasticidad sináptica, la neurogénesis o la vascularización cerebral, procesos imprescindibles para un buen funcionamiento cerebral y aprendizaje. El ejercicio físico tiene un impacto positivo en el funcionamiento hipocampo, en la liberación de importantes neurotransmisores y en el desarrollo de las funciones ejecutivas del cerebro, básicas para el rendimiento académico y desarrollo personal del alumnado. Por ejemplo, simples parones de 4 minutos en la actividad académica diaria de niños con edades entre 9 y 11 años para realizar ocho ciclos de movimientos rápidos (saltos, sentadillas o similares) durante 20 segundos, seguidos de descansos de 10 segundos, son suficientes para optimizar la atención necesaria que requiere la tarea posterior y mejorar el desempeño en la misma (Ma et al., 2015; ver figura 1).

Existen diversas evidencias empíricas que sugieren una asociación entre los procesos motores y cognitivos en el desarrollo y aprendizaje temprano. Estudios con neuroimágenes muestran que tareas que activan la corteza prefrontal -sede de las funciones ejecutivas-, también activan regiones básicas para el procesamiento motor, especialmente el cerebelo. La función de esta estructura de la parte posterior del tronco del encéfalo parece que va más allá de la coordinación de los movimientos y el aprendizaje motor (Wagner et al., 2017). Y, junto a esto, niños con dificultades de aprendizaje -asociadas al TDAH o a la dislexia, por ejemplo- a menudo manifiestan déficits motores. Pues bien, parece que tanto las funciones ejecutivas del cerebro como las habilidades motoras finas predicen un mejor aprendizaje en la etapa de educación infantil (Cameron et al., 2012).

El poder de los dedos

En prácticamente todas las culturas los niños aprenden a contar con los dedos. Es una actividad sensorial y motriz que se realiza antes de que el cálculo se automatice y se convierta en un proceso puramente mental. Contar con los dedos se suele considerar una estrategia inadecuada que una buena educación eliminará. Sin embargo, constituye una acción precursora importante para el aprendizaje de la base 10 y, según Dehaene (2016), las representaciones cerebrales de los números y la disposición de la mano obedecen a principios de organización muy similares. Parece que la calidad del manejo de los dedos, algo que podemos cultivar en la infancia, es importante para el desarrollo de la capacidad aritmética. Los estudios sugieren que los niños que en la etapa de educación infantil manejan mejor sus dedos se desenvolverán mejor después en matemáticas, y que el entrenamiento de los dedos en niños de 6 años mejora las competencias numéricas (Gracia-Bafalluy y Noël, 2008). Relacionado con lo anterior, Vallée-Tourangeau y sus colaboradores (2016 a) han comprobado que cuando se les permite a los participantes de los experimentos manipular objetos, en lugar de utilizar una tableta electrónica para realizar los cálculos, se facilita la resolución creativa de los problemas del tipo: ‘¿Cómo colocarías 17 animales en 4 parcelas de forma que haya un número impar en cada una de ellas? (ver figura 2) Y la utilización con las manos de fichas numéricas reduce la temida ansiedad matemática y mejora la capacidad aritmética cuando se han de realizar cálculos mentales largos (Vallée-Tourangeau et al., 2016 b).

Por otra parte, en el contexto lingüístico se ha comprobado lo útil que resulta enseñar a los niños ejercicios en los que van trazando las letras con los dedos. Añadir los estímulos visuales y auditivos a la exploración háptica, a través de la práctica de los gestos de la escritura, acelera el aprendizaje de la lectura (Fredembach et al., 2009). Y desde la neurociencia parece haberse encontrado la justificación: existen rutas neurales diferentes asociadas al reconocimiento de objetos y a su orientación. Ante las letras estáticas se activa una región del sistema visual que acaba especializándose en el reconocimiento de las letras: la llamada ‘caja de letras del cerebro’. Pero cuando las letras están en movimiento, al escribirlas en cualquier lengua, se activa una región de la corteza premotora izquierda asociada a los gestos: el área de Exner (Nakamura et al., 2012). Y es que los gestos son también muy importantes para el aprendizaje.

El poder de los gestos

Las personas ciegas de nacimiento gesticulan pese a no haberlo visto nunca. Esto sugiere que nuestra capacidad gestual es innata y que podemos gesticular para nuestros interlocutores pero también para nosotros mismos.

En los últimos años se han realizado interesantes experimentos que demuestran que puede ser muy beneficioso animar a los estudiantes a que utilicen sus manos en sus explicaciones porque ello puede revelar conocimientos implícitos y contribuir a que se asimile la información novedosa. La investigadora Susan Goldin-Meadow analizó el famoso experimento de Piaget en el que niños de 6 años ven dos filas de objetos y han de decidir en cuál de ellas hay más. La trampa consiste en que, aunque ambas filas contienen el mismo número de objetos, en una de ellas están más espaciados. Y ello hace que los niños respondan que hay más objetos en la fila más larga. Sin embargo, cuando se analizan los gestos de sus explicaciones, se observa que transmiten cosas diferentes. Algunos extienden los brazos denotando con su gesto que una fila es más larga que otra. Otros, en cambio, mueven las manos identificando una correspondencia entre los objetos de cada fila. Es decir, aunque no saben expresarse con palabras, sus expresiones corporales sugieren que han descubierto la esencia del problema (Goldin-Meadow, 2017; ver figura 4). Y los maestros podemos utilizar esta información para mejorar la enseñanza y el aprendizaje.

Además de reflejar lo que sabemos, los gestos pueden mejorar nuestra forma de pensar si esa capacidad se estimula de forma adecuada. Enseñar a los niños a expresarse con gestos mientras hablan puede acelerar su aprendizaje. Por ejemplo, cuando se les pidió a estudiantes de tercero y cuarto de primaria que resolvieran ecuaciones del tipo 2 + 5 + 7 = _ + 7, por primera vez, no eran capaces de resolverlas. Tras ello se pidió a un grupo que moviera las manos para explicar las respuestas y el otro debía hacerlo solo con palabras. A continuación, se les explicó a todos el procedimiento para resolver las ecuaciones y se les propuso otras diferentes. Se comprobó que los alumnos que habían gesticulado antes de la enseñanza resolvieron más ejercicios que no aquellos que mantuvieron las manos quietas. Parece que el movimiento de manos les había ayudado a asimilar la información explicada. Asimismo, algunos niños expresaban con sus gestos formas alternativas de resolución (señalar el 2, el 5 y el 7 del primer miembro de la ecuación y hacer un gesto de supresión en el 7 del miembro de la derecha). Los gestos reflejaban un conocimiento implícito de los niños y ayudaban a mantenerlo activo en sus mentes. Y, junto a lo anteriormente comentado, también se ha observado que los gestos del maestro pueden transmitir información precisa, pero también pueden inducir al error. En ecuaciones del tipo 2 + 3 = x + 1, si acompañamos la explicación con gestos manuales que señalan los números del miembro de la izquierda, nos paramos al llegar al igual y luego señalamos los números del miembro de la derecha, se transmite la información bien. Cosa que no ocurre si vamos señalando de forma seguida los términos de ambas ecuaciones. En esa situación, el alumno puede interpretar que se han de sumar todos los números (Goldin-Meadow, 2017).

La gestualidad corporal puede contribuir al aprendizaje en otros contextos, como en el lingüístico. En unos interesantes experimentos se comprobó que cuando niños de primaria manipulaban juguetes simulando la acción de lo que estaban leyendo mejoraban la comprensión del texto e incrementaban su vocabulario. Y los mismos efectos se conseguían cuando los maestros enseñaban a los niños a imaginar esas simulaciones (Glenberg, 2011).

Por otra parte, se ha comprobado que cuando acompañamos una palabra o frase con un gesto es más fácil recordarla, lo cual tiene muchas implicaciones pedagógicas. Su utilidad se ha comprobado en la enseñanza de nuevos idiomas, en donde suelen utilizarse estrategias audiovisuales en el aprendizaje de nuevo vocabulario que se olvidan con rapidez. Parece que acompañar las palabras con gestos que las representan implica a redes sensoriales y motoras extensas que involucran a la memoria explícita (consciente), pero también a la memoria implícita (inconsciente), y ello podría favorecer la consolidación del nuevo vocabulario (Macedonia y Mueller, 2016)

El poder del cuerpo

A diferencia de lo que ocurre con bailarines aficionados, los expertos activan más regiones sensoriales y motoras del cerebro cuando observan videos de cualquier tipo de baile. Y esta activación se incrementa cuando observan movimientos ya conocidos (Calvo-Merino et al., 2005). Estos resultados sugieren que disponemos de un sistema especular que nos permite vincular acciones ajenas con las propias y que podemos comprenderlas a través de una simulación motora. Todo ello tiene enormes implicaciones educativas. Por ejemplo, en una reciente investigación se comprobó que la comprensión de magnitudes físicas, como el momento angular (relacionada con los giros), se facilitaba con la activación de regiones sensoriales y motoras debido a la manipulación de ruedas de bicicletas, por ejemplo, y era menor cuando los estudiantes solo observaban la acción (Kontra et al., 2015).

En el fondo, todos estos estudios lo que sugieren es que el aprendizaje es un proceso activo. Lamentablemente, no se le da la importancia que merece al tiempo dedicado a la educación física o a los recreos y existe una tendencia a restringirlos para poder dedicar más tiempo a la enseñanza considerada como académica. El enfoque tradicional en el que los estudiantes pasan la mayor parte de su tiempo recibiendo información visual y auditiva en una situación pasiva, ni es la mejor forma para optimizar su aprendizaje, ni es lo que está en consonancia con lo que sabemos sobre el funcionamiento del cerebro. Sin tener conocimientos sobre neurociencia, John Dewey ya lo dijo hace mucho tiempo: “La enseñanza debe ser por la acción. La educación es la vida; la escuela es la sociedad”.

Jesús C. Guillén

.

Referencias:

  1. Cameron C. E. et al. (2012): “Fine motor skills and executive function both contribute to kindergarten achievement”. Child Development 83(4), 1229-1244.
  2. Damasio A. (2010). Y el cerebro creó al hombre: ¿Cómo pudo el cerebro generar emociones, sentimientos, ideas y el yo? Barcelona: Destino.
  3. Dehaene, Stanislas (2016). El cerebro matemático: Como nacen, viven y a veces mueren los números en nuestra mente. Buenos Aires: Siglo Veintiuno.
  4. Fredembach B. et al. (2009): “Learning of arbitrary association between visual and auditory novel stimuli in adults: the ‘bond effect’ of haptic exploration”. PLoS One 4(3): e4844.
  5. Glenberg A. M. (2011): “How reading comprehension is embodied and why that matters”. International Electronic Journal of Elementary Education 4(1), 5-18.
  6. Goldin-Meadow S. (2017): “Using our hands to change our minds”. WIREs Cognitive Science 8: e1368.
  7. Gracia-Bafalluy M., Noël M. P. (2008): “Does finger training increase young children’s numerical performance?” Cortex 44(4), 368-75.
  8. Kontra C. et al. (2015): “Physical experience enhances science learning”. Psychological Science 26(6), 737-749.
  9. Ma J. K., Le Mare L., Gurd B. J. (2015): “Four minutes of in-class high-intensity interval activity improves selective attention in 9- to 11-year olds”. Applied Physiology Nutrition and Metabolism 40, 238-244.
  10. Macedonia M., Mueller K. (2016): “Exploring the neural representation of novel words learned through enactment in a word recognition task”. Frontiers in Psychology 7:953.
  11. Nakamura K. et al. (2012): “Universal brain systems for recognizing word shapes and handwriting gestures during reading”. PNAS 109(50), 20762-20767.
  12. Vallée-Tourangeau F. et al. (2016 a): “Insight with hands and things”. Acta Psychologica 170, 195-205.
  13. Vallée-Tourangeau F. et al. (2016 b): “Interactivity mitigates the impact of working memory depletion on mental arithmetic performance”. Cognitive Research: Principles and Implications 1:26.
  14. Wagner M. J. et al. (2017): “Cerebellar granule cells encode the expectation of reward”. Nature, Mar 20: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature21726.html