Aprendizaje y desarrollo infantil: sobre-estimulación vs. asombro

31 enero, 2016 5 comentarios

Existe en el niño un movimiento natural de proactividad para el conocimiento que, hoy en día, no solo subestimamos, sino que ignoramos y que cancelamos con bombardeos continuos de estímulos externos. El aprendizaje se origina desde dentro, y el mecanismo a través del cual deseamos conocer es el asombro

Catherine L’Ecuyer

Ya en el siglo IV a.c. Platón decía que “el asombro es el origen de la filosofía” y su discípulo Aristóteles añadía que “la admiración es lo que impulsa a los hombres a filosofar, empezando por admirarse de lo que les sorprendía por extraño, así se preguntaron por el origen del Universo”. El asombro es la puerta del conocimiento, la admiración es la conciencia de no saber. Nos admiramos cuando algo nos sorprende por extraño, por inesperado. Esa capacidad de asombro está implícita en la inocencia de los niños, su capacidad de fascinación y curiosidad son el motor del impulso innato de aprender. La admiración y el asombro son elementos esenciales para descubrir el mundo que nos rodea.

Los bebés aprenden de lo inesperado

Cuando mostramos a un niño algo sorprendente conseguimos captar su atención ya que parece que los bebés están programados para fijarse en lo inesperado y aprender cómo funciona el entorno (Stahl y Feigenson, 2015). Estas investigadoras realizaron un experimento con una muestra de 110 bebés de 11 meses. A un grupo le presentaron un juguete desconcertante que atravesaba la pared, desafiaba la gravedad o aparecía en un lugar inesperado, mientras que los bebés de otro grupo observaban un juguete con un funcionamiento normal. A continuación mostraron a todos los participantes un objeto nuevo: los bebés que habían observado previamente un juguete con un comportamiento predecible se entretuvieron con los dos por igual. Sin embargo, los bebés que habían visto el juguete que se comportaba “extrañamente”, prestaron más atención a éste ignorando el nuevo.

Estos resultados muestran que los bebés de 11 meses se aburren con los objetos que se comportan de manera predecible y prefieren centrar su atención en los que violan las expectativas, pero además utilizan lo inesperado para diseñar sus siguientes “experimentos”: cuando una pelota parecía atravesar la pared, el bebé la golpeaba como pretendiendo comprobar si era un objeto sólido. Para las autoras se trata de un conocimiento innato e indica que los niños usan lo que ya saben sobre el mundo para generar predicciones.

Parece que los bebés tienen conocimiento causal del mundo y utilizan ese conocimiento para hacer predicciones, para explicar el pasado y para imaginar mundos posibles. Los niños tienen ideas cotidianas acerca de la psicología, la biología y la física (Gopnik, 2010), por ello muestran asombro y curiosidad ante lo inesperado.

Curiosidad como motivación intrínseca

Cuando algo nos sorprende y nos fascina aprendemos de forma espontánea. Recientes investigaciones han demostrado que la novedad mejora la memoria: los nuevos eventos estimulan el hipocampo que compara la información nueva con la ya existente. La información novedosa hace que se incrementen los niveles de dopamina, la cual facilita el almacenamiento de nuevos recuerdos (Gruber et al, 2014).

De estas investigaciones se pueden extraer tres conclusiones respecto a la curiosidad y los cambios en el cerebro:Cuanto mayor es la curiosidad en una persona, mayor es su capacidad para aprender cualquier tipo de información, incluso aquella que no está relacionada con el objeto de su curiosidad.

1. Cuanto mayor es la curiosidad en una persona, mayor es su capacidad para aprender cualquier tipo de información, incluso aquella que no está relacionada con el objeto de su curiosidad.

2. Cuando la curiosidad es estimulada, se registra una mayor actividad cerebral en las áreas relacionadas con la recompensa. La curiosidad es una motivación intrínseca que activa el circuito de recompensa del cerebro de forma similar a la producida en respuesta a motivadores extrínsecos.

3. La curiosidad aumentó la actividad en el hipocampo, región que contribuye a la formación de nuevos recuerdos. La curiosidad activa el sistema de recompensa y, la interacción entre este sistema de recompensa y el hipocampo, parece poner al cerebro en un estado en el que tiene más probabilidades de aprender y retener información, incluso si esa información no es de especial interés.

La activación del circuito de recompensa cerebral junto con la activación del hipocampo favorece el aprendizaje y la memoria. La curiosidad inicial que lleva a un niño a buscar respuestas tiene un efecto positivo en la motivación y el aprendizaje. Permitir que los niños busquen esas respuestas libremente puede ayudar a que encuentren otras respuestas que vayan más allá de su duda inicial.

Más efectos positivos del asombro

Sentir asombro puede ayudar a crear un vínculo con otras personas y hacer que actuemos con más generosidad, según las conclusiones extraídas de de los estudios de un equipo de investigadores de la Universidad de California (Piff et al., 2015). Los experimentos revelaron que las inducciones al asombro aumentaron la toma de decisiones de tipo ético, la generosidad y las conductas pro-sociales.

En otro estudio realizado en la Universidad de Stanford, los investigadores comprobaron que el sentimiento de asombro cambiaba la percepción subjetiva del tiempo, reduciendo su velocidad. Los participantes en el estudio percibían que tenían más tiempo disponible y se mostraban más pacientes, menos materialistas y más propensos a ayudar a otros (Rudd et al, 2012)

Del mismo modo, parece que sentir emociones positivas como asombro, alegría o placer, puede favorecer el sistema inmunitario. Eso es lo que pone de manifiesto un estudio de la Universidad de Berkeley que postula que el asombro o fascinación sería un potente predictor de niveles bajos de proteínas pro-inflamatorias, las llamadas citoquinas (Stellar et al., 2015).

Todos estos hallazgos nos aportan más argumentos para llevar el asombro a las aulas, acompañándolo de situaciones alegres y placenteras para nuestros alumnos.

Consecuencias de la sobre-estimulación

Durante los primeros años de vida la velocidad de producción de sinapsis es asombrosa por lo que la sobre-estimulación, además de ser innecesaria, podría ser contraproducente para el cerebro en desarrollo. Según estudios realizados por el grupo de investigación en Neuroplasticidad y Aprendizaje de la Universidad de Granada, coordinado por Milagros Gallo, enseñar a los niños a realizar tareas demasiado complejas antes de que su sistema esté preparado para llevarlas a cabo, puede producir deficiencias permanentes en la capacidad de aprendizaje. Este mismo grupo de trabajo, en un experimento realizado con ratas, comprobó que una estimulación temprana inadecuada puede generar estrés y bloqueo (Manrique et al, 2005).

Cuando un niño se ve sometido a una sobrecarga estimular, sus patrones de percepción y respuesta no se llegan a consolidar ya que se ven interrumpidos por nuevos estímulos que luchan por captar su atención antes de poder asimilar los anteriores. Esto tiene como consecuencia que la capacidad de atención se extenúe y tenga cada vez mayores dificultades para centrarse en algo, lo que el filósofo alemán Türcke ha denominado “distracción concentrada”, de la que el TDAH sería tan solo un síntoma.

Menos es más

Es muy frecuente observar, sobre todo en las aulas de las primeras etapas, paredes llenas de posters, dibujos, imágenes…en definitiva, paredes de las que resulta imposible adivinar en qué color están pintadas, incluso llegando a límites tan absurdos como poner abecedarios y números (en toda la gama cromática, a ser posible) en aulas de niños de pocos meses ¿Podemos imaginar cómo se siente un niño en ese ambiente en el que, desgraciadamente, pasa una gran parte de su tiempo? No vamos a valorar las cuestiones estéticas (aunque también nos parecen importantes en el entorno del niño) pero sí analizaremos las repercusiones que esta “sobrecarga decorativa” parece tener para la atención y el aprendizaje.

Recientemente se realizó un estudio con una muestra de 24 niños de educación infantil (5 años) en el que fueron asignados a dos grupos (n=12). Los investigadores transformaron el laboratorio para simular un aula con una decoración excesiva y un aula sin decoración (ver figura 1). Los resultados obtenidos muestran que los alumnos que estaban en aulas más decoradas se mostraron más distraídos y prestaron menos atención a la tarea encomendada que los niños que estaban en aulas con menos objetos decorativos. Además se comprobó que, aunque los niños aprendieron en los dos tipos de aulas, el aprendizaje fue mayor en la que había menos decoración (Fisher et al., 2014).

Figura

También es frecuente encontrar en las aulas de infantil multitud de juguetes electrónicos con estridentes y repetitivos sonidos y luces multicolores que consiguen captar automáticamente la atención del niño. Pero, además de entretenerlos momentáneamente (afortunadamente pronto se dan cuenta de que resulta monótono y aburrido e intentan buscarle otras “utilidades”) ¿qué beneficios aportan a los pequeños estos juguetes electrónicos?

Un reciente estudio sugiere que los juguetes que producen luces y sonidos, aun siendo más llamativos, se asocian con un uso del lenguaje de menor calidad y menos amplitud de vocabulario. (Sosa, 2015). Los investigadores seleccionaron 26 parejas de padres y niños de entre 10 a 16 meses de edad y grabaron los sonidos mientras jugaban en sus casas. Los participantes recibieron tres tipos de juguetes: electrónicos (un ordenador para bebés, una granja con sonidos y un teléfono móvil); tradicionales (rompecabezas de madera maciza y bloques de caucho con fotos); y cinco libros de cartón con animales de granja, formas o colores. En las grabaciones se observó que los padres aportaban menos feedback oral a sus bebés (daban menos respuestas y utilizaban menos palabras y giros conversacionales) cuando jugaban con juguetes electrónicos y que los niños vocalizaban menos. También se comprobó que el número de palabras utilizadas durante el juego con elementos tradicionales era menor que cuando jugaban con libros, conclusión que respalda los potenciales beneficios que aporta leer a los niños muy pequeños.

Los juguetes electrónicos con luces y sonidos son muy eficaces para llamar la atención de los niños mediante la activación de su reflejo de orientación (Radesky y Christalis, 2015), sin embargo, según los resultados del estudio de Sosa, parece que además reducen la interacción verbal entre los adultos y los niños. Esta interacción, además de contribuir al desarrollo del lenguaje favorece habilidades sociales como el respeto por los turnos o la adquisición de roles. No obstante, a pesar de que los resultados plantean una importante línea de investigación, deben ser tomados con cierta cautela por el tamaño limitado de la muestra y la similitud de los participantes.

Reflexiones

Todos aprendemos de forma espontánea cuando algo nos fascina, cuando ocurre algo diferente a lo esperado nos sorprendemos y le dedicamos toda nuestra atención. Imaginemos un mundo nuevo, completamente desconocido, donde todo está por explorar…eso exactamente es lo que encuentran los bebés cuando llegan a este mundo ¿Vamos a negar a los niños el privilegio de descubrir un mundo nuevo lleno de acontecimientos asombrosos solo porque nosotros ya lo conocemos y sabemos qué es lo “mejor para ellos”? Permitamos que lo descubran y que disfruten de la emoción del asombro, es su momento, su mente no está contaminada por la experiencia y debemos dejar que todo siga su curso natural, sin prisas, sin adelantar acontecimientos y sin forzar aprendizajes que no les corresponden y para los que no están preparados, recordemos que no se trata de una competición.

Cuando viajamos volvemos a esa curiosidad de gran alcance de la infancia y descubrimos nuevas cosas sobre nosotros mismos y los demás. Un buen viajero es el que está abierto al azar, un adulto en un lugar extraño es como un bebé: todo es más interesante

Alison Gopnik

Milagros Valiente

.

Referencias:

  1. Fisher A.V., Godwin K.E. & Seltman H. (2014): “Visual environment, attention allocation and learning in young children: when too much of a good thing may be bad”. Psychological Science 25(7), 1362–1370.
  2. Gopnik A. (2010). El filósofo entre pañales. Temas de hoy, Madrid
  3. Gruber M.J., Gelman B. D., & Ranganath C. (2014): “States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit”. Neuron 84(2), 486-96.
  4. L´Ecuyer C. (2013). Educar en el asombro. Plataforma Editorial, Barcelona.
  5. Manrique T., Molero A., Cándido A. & Gallo, M.  (2005): “Early learning failure impairs adult learning in rats”.  Developmental Psychobiology 46, 340-349.
  6. Piff P.K., Dietze P., Feinberg M., Stancato, D.M. & Keltner D. (2015): “Awe, the small self and prosocial behaviour”. Journal of Personality and Social Psychology 108(6), 883-899.
  7. Radesky J.S. & Christalis D.A. (2015): “Keeping children´s attention. The problem with bells and whistles”. JAMA Pediatrics Dec. 23, 1-2.
  8. Rudd M., Vohs K.D. & Aaker J. (2012): “Awe expands people´s perception of time, alters decision making and enhances well-being”. Psychological Science 23(10), 1130-1136.
  9. Sosa A.V. (2015): “Association of the type of toy used during play with the quantity and quality of parent-infant communication”. JAMA Pediatrics Dec. 23, 1-6.
  10. Stahl A.E. & Feigenson L. (2015): “Observing the unexpected enhances infants´ learning and exploration”. Science 348 (6230), 91-94.
  11. Stellar J.E., John-Henderson N., Anderson C.L., Gordon A.M., McNeil G.D. & Keltner D. (2015): “Positive affect and markers of inflammation: discrete positive emotions predict lower levels of inflammatory cytokines”. Emotion 15(2), 129-133.

Preguntas que encienden la chispa del aprendizaje: desde Sócrates hasta hoy

En vez de responder a cuestiones que los alumnos no han planteado, los buenos

profesores les incitan a hacer preguntas para motivarlos a analizarlas

Ken Robinson

Los seres humanos somos curiosos por naturaleza y ello ha garantizado la supervivencia de la especie. Nuestro cerebro asociativo está continuamente haciendo predicciones y cuando ocurren sucesos inesperados se libera dopamina, un neurotransmisor vinculado a la motivación que garantiza el aprendizaje. Conocer el mundo que nos rodea consiste en mantener viva la curiosidad que, por ejemplo, muestran los niños en los primeros años a través de sus incesantes preguntas (“¿por qué…?”). Lamentablemente, con el paso de los años, las ansias por conocer, descubrir o cuestionar que manifestaban muchos de esos niños en el aula tiempo atrás se va difuminando y dejan de preguntar. ¿Está ello relacionado con el hecho de que en los primeros años enseñamos a los niños mientras que en la adolescencia se les enseña asignaturas? ¿Quién ha de preguntar más, el profesor o el alumno? ¿Qué tipo de preguntas facilitan la reflexión y el aprendizaje? ¿Qué es más importante, la pregunta o la respuesta? Muchas preguntas con muchas respuestas que, tal como ocurre en la práctica cotidiana en el aula, nos permiten descubrir y disfrutar el aprendizaje manteniendo nuestro cerebro activo.

Del laboratorio al aula

En un anterior artículo (ver) analizamos la incidencia positiva sobre el aprendizaje del alumno de tres técnicas de estudio: la práctica del recuerdo (efecto del test), la práctica espaciada y la práctica intercalada. Existen evidencias empíricas sólidas que muestran que estas estrategias benefician más el aprendizaje que no otras, tradicionalmente más utilizadas, como la relectura, el subrayado de apuntes o la utilización de estrategias mnemotécnicas (Dunlosky et al., 2013). Junto a aquellas, los investigadores también han identificado la importancia de que el alumno se plantee preguntas durante las tareas de aprendizaje que le permitan explicarse y reflexionar sobre lo que está haciendo, que en definitiva son formas de implicar al alumno en el aprendizaje y de fomentar la metacognición. En concreto, se habla de dos técnicas específicas que están relacionadas y que pueden aplicarse tanto individualmente como en pequeños grupos: la interrogación elaborativa y la auto-explicación.

Interrogación elaborativa

Consiste en hacerse preguntas sobre los hechos a los que hace referencia el texto que se está leyendo (“¿por qué Marte tarda más en dar una vuelta alrededor del Sol que la Tierra?”), integrando la nueva información con los conocimientos previos (“porque está más alejado del Sol”, “porque su velocidad de traslación es menor”, etc.). Intentar responder a la pregunta planteada puede generar nuevas preguntas que ayudarán a profundizar y reflexionar sobre el tema, garantizándose una mayor retención y comprensión del mismo. Por ejemplo, en un estudio se evaluó la eficacia de esta técnica en el contexto de un curso de biología (Smith et al., 2010). Los alumnos debían leer un texto sobre digestión humana que no conocían. Los integrantes del grupo experimental respondían una pregunta (¿por qué la saliva debe mezclarse con la comida para iniciarse la digestión?) sobre alguna afirmación expuesta cada 150 palabras, aproximadamente. En el grupo de control, los alumnos debían leer el texto dos veces a su propio ritmo. Al final, todos los participantes del experimento respondieron 105 preguntas de verdadero o falso sobre lo leído y, por supuesto, ninguna de ellas coincidía con las planteadas al grupo experimental. Los resultados revelaron que los alumnos que utilizaron la interrogación elaborativa obtuvieron mejores resultados en los tests (76% vs 69% de aciertos), y no solo recordaban mejor los hechos preguntados sino que la lectura de esta forma también les permitía una mayor comprensión de partes del texto que no abarcaban las preguntas propuestas. Sin olvidar que, en promedio, el tiempo dedicado a la tarea en los dos grupos no difería en exceso (32 vs 28 minutos). Experimentos similares sugieren también la importancia de los conocimientos previos para el aprendizaje mediante esta técnica (ver figura 1).

Figura 1

Auto-explicación

Consiste en explicarse a uno mismo, sea en silencio o en voz alta, cómo se relaciona lo leído en un texto con lo que ya se conoce, siendo consciente de cómo se está desarrollando el pensamiento. Por ejemplo, el alumno puede plantearse cuando está estudiando preguntas del tipo ¿qué información sobre lo que acabo de leer ya conocía?, ¿cuál es la información novedosa, ¿qué necesito saber para resolver el problema?…y, a partir de ellas, generar sus propias explicaciones. La auto-explicación está directamente relacionada con la interrogación elaborativa porque ambas estrategias conllevan un aprendizaje activo en el que los alumnos reflexionan sobre lo que están aprendiendo con preguntas que se plantean, o expresando de otro modo la información, con sus propias palabras, para una mayor comprensión de la misma (Roediger III y Pyc, 2012).

En el contexto educativo también se han analizado de forma rigurosa los beneficios de la auto-explicación sobre el aprendizaje de los alumnos. Por ejemplo, en un estudio se analizó la incidencia de esta técnica con adolescentes en la materia de matemáticas (Wong et al., 2002). En un grupo se pedía a los estudiantes que analizaran en voz alta un teorema geométrico que no conocían, junto a una demostración del mismo y ejemplos de su aplicación en problemas, a partir de preguntas que se les formulaba del tipo ¿qué partes de esta página leída son novedosas?, ¿a qué se refiere este enunciado? o ¿hay algo que todavía no comprenda?, a diferencia del resto que no recibió ningún tipo de instrucción y reflexionaron sobre el teorema como siempre lo habían hecho. Al cabo de una semana todos los alumnos participaron en un repaso general sobre el teorema que habían estudiado con anterioridad y el día siguiente realizaron una prueba en la que debían responder preguntas similares a las que habían practicado o hacer ciertas inferencias sobre lo estudiado. Los análisis revelaron que cuando las preguntas se alejaban de lo estudiado y los alumnos debían transferir los conocimientos a situaciones y problemas diferentes, aquellos que utilizaron la auto-explicación obtenían mejores resultados. Esta técnica podía suministrar el aprendizaje profundo necesario para que se diera la abstracción y la ansiada transferencia.

Sócrates bajo el escáner

Figura 2

El método socrático constituye el método de enseñanza más antiguo conocido que todavía se utiliza. Y ha sobrevivido al paso del tiempo, básicamente, porque está centrado en el alumno, se basa en el arte de formular preguntas y tiene un planteamiento constructivista (Tokuhama, 2014). En el aula, el diálogo socrático tiene como objetivo, a través de las preguntas y debates generados, suministrar un espacio para la reflexión que permite identificar al alumno su grado de comprensión sobre una determinada cuestión, y en ese proceso el profesor actúa como facilitador del aprendizaje. Aunque una cuestión inicial en forma de dilema moral (Un tranvía circula sin control por una vía en la que se encuentran cinco personas que morirán si el tranvía continúa su trayecto. Puedes salvar la vida de estas personas pulsando un botón que desvía el tranvía por una vía diferente, de forma que sólo matarás a una persona.¿Pulsarías el botón?) o pregunta controvertida (¿se deben legalizar las drogas?) puede comenzar el proceso, el verdadero profesor socrático sabrá plantear nuevas preguntas, generalmente abiertas y vinculadas a situaciones reales, y hará participar a todos los alumnos de forma democrática para convertir el diálogo en una verdadera experiencia de aprendizaje.

Utilizando las recientes técnicas de escaneo que permiten explorar la actividad cerebral de varias personas interactuando (ver figura 2), un estudio reciente registró la actividad de la corteza prefrontal de 17 parejas alumno-profesor durante un diálogo socrático clásico sobre geometría (Holper et al., 2013). En concreto, se reprodujo entre adultos y adolecentes el diálogo en el que Sócrates hizo 50 preguntas al esclavo de Menón que solo requerían sumas y multiplicaciones y que permitió al alumno encontrar por si solo la forma de duplicar el área de un cuadrado. Este experimento es novedoso porque representa la primera medida de la actividad cerebral referida a la relación entre el profesor y el alumno, una interacción que es muy importante para el aprendizaje del estudiante. Los resultados revelaron una gran coincidencia del diálogo socrático con la prueba experimental en pleno S. XXI, incluso en preguntas en las que el esclavo responde de forma incorrecta (por ejemplo, si quiero duplicar el área, duplico el lado). Casi el 50% no supo generalizar la solución cuando se les preguntó, tras el diálogo, cómo duplicar el área de un cuadrado diferente (pregunta 51) y los que sí que lo hicieron mostraron un patrón de actividad cerebral en la corteza prefrontal mucho menor que los otros y muy parecido al de sus profesores (ver figura 3). La menor activación cerebral indicaría una mayor eficiencia neural, algo que ya se ha comprobado en ajedrecistas profesionales o en personas con gran capacidad para resolver problemas, mientras que la correlación con la actividad cerebral del profesor indicaría, como comentaban los propios autores de la investigación, una sincronización neural capaz de predecir el éxito en la tarea académica propuesta.

Figura 3

Preguntas en el aula

Los retos, las cuestiones provocativas o las investigaciones que parten de preguntas motivadoras son excelentes formas de activar el cerebro de los alumnos. Los buenos profesores saben formular preguntas ingeniosas que orientan e implican a los alumnos en el proceso de aprendizaje y que fomentan la necesaria reflexión. Las investigaciones de John Hattie (2009) muestran la importancia de las preguntas para facilitar el feedback durante las tareas o mejorar la comprensión de los contenidos, aunque resaltan que las preguntas formuladas por los propios alumnos y su correspondiente análisis son más importantes incluso que las planteadas por el profesor, algo que está en consonancia con lo analizado en el inicio de este artículo. Uno de los objetivos principales de preguntar a los alumnos debería ser el de mejorar su hábito de cuestionarse las cosas y plantearse nuevas preguntas y retos.

En la práctica cotidiana en el aula, se ha comprobado que los profesores dejamos muy poco tiempo de respuesta a los alumnos cuando formulamos una pregunta. Permitir unos segundos más (al menos 5 segundos tras una pregunta y después de una respuesta) puede resultar beneficioso para fomentar una mayor seguridad y reflexión en el alumno (Stichter et al., 2009). Y no todas las preguntas ni la forma de plantearlas resultan adecuadas. No es lo mismo comenzar una pregunta con “¿Quién puede decirme…?” que con “¿Qué sabéis sobre…?” (Costa y Kallick, 2009). En el primer caso, se asume que solo algunos alumnos conocen la respuesta mientras que en el segundo se está sugiriendo que todos tienen algo que ofrecer. O cuando el profesor suele hacer preguntas con respuestas únicas conocidas, el alumno acaba intentando descubrir lo que el profesor está pensando, mientras que si se plantean cuestiones abiertas cuya respuesta es múltiple o desconocida es cuando se ha de iniciar un verdadero proceso de indagación, que es el que suscita la curiosidad del alumno facilitando su aprendizaje al activar el llamado sistema de recompensa cerebral (ver figura 4).

Figura 4

Preguntas esenciales

Dentro de la gran variedad de formas y objetivos de las preguntas que podemos formular los profesores a los alumnos en el aula, McTighe y Wiggins (2013) han identificado unas que son especialmente importantes para facilitar la comprensión de las ideas y procesos claves en el aprendizaje: las preguntas esenciales. Según los autores, estas preguntas se caracterizan por:

  1. Son abiertas. No tienen una respuesta única, final y correcta.
  2. Invitan a la reflexión, a menudo generando un debate o discusión.
  3. Estimulan el pensamiento de orden superior como el análisis, la inferencia, la evaluación o la predicción.
  4. Proponen ideas importantes en disciplinas concretas o que se pueden transferir a otras.
  5. Sugieren nuevas preguntas que estimulan una mayor investigación.
  6. Requieren apoyo y justificación, no solo una respuesta.
  7. Se repiten en el tiempo; es decir, la pregunta debería poder ser planteada en nuevas ocasiones.

Estas preguntas esenciales que estimulan la reflexión, la investigación o nuevas preguntas y no solo respuestas adecuadas, sirven como vías de acceso a la comprensión, se centran en el aprendizaje a largo plazo y pueden utilizarse en cualquier materia. Pongamos algunos ejemplos:

Historia: ¿Cómo podemos saber lo que realmente ocurrió en el pasado?

Matemáticas: ¿Cuándo y por qué deberíamos realizar una aproximación?

Lectura: ¿Qué hacen los buenos lectores cuando no entienden un texto?

Ciencia. ¿Qué provoca que los objetos se muevan tal como lo hacen?

Arte: ¿Qué influye en la expresión creativa?

Este tipo de preguntas, junto a las utilizadas en la interrogación elaborativa y la auto-explicación que fomentan la metacognición, serán imprescindibles y acostumbrarán a los alumnos a cuestionarse lo que están haciendo, lo cual les permitirá afrontar mejor los nuevos retos del aprendizaje, y no solo el de la escuela.

Como siempre comentamos, en la práctica se requiere flexibilidad. Las preguntas han de utilizarse en el momento adecuado. Y aunque en determinadas situaciones puede resultar importante un aprendizaje factual, el buen profesor instaura el hábito de preguntar ¿por qué…? o ¿cómo…? tras cada dato o hecho analizado, sea la fecha de inicio de la Segunda Guerra Mundial o la fórmula utilizada para la segunda ley de Newton. Preparar a los alumnos para las necesidades modernas exige fomentar una serie de competencias básicas para el aprendizaje como la cooperación, la creatividad o el pensamiento crítico y la resolución de problemas que pueden facilitarse con las preguntas adecuadas. Y ello está en consonancia con la necesidad inherente al ser humano de conocer el mundo que le envuelve. Nuestro cerebro curioso agradece las buenas preguntas.

Jesús C. Guillén

.

Referencias:

  1. Babiloni F., & Astolfi L. (2014): “Social neuroscience and hyperscanning techniques: past, present and future”. Neuroscience & Biobehavioral Reviews 44, 76-93.
  2. Costa, Arthur L. & Kallick, Bena (2009). Learning and leading with habits of mind: 16 essential characteristics for success. Alexandria: Association for Supervision and Curriculum Development. Mind, Brain, and Education 7(3), 177-181.
  3. Dunlosky J., Rawson K. A., Marsh E. J., Nathan M. J., & Willingham D. T. (2013): “Improving students’ learning with effective learning techniques: promising directions from cognitive and educational psychology”. Psychological Science in the Public Interest 14(1), 4-58.
  4. Gruber M. J., Gelman B. D., & Ranganath C. (2014): “States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit”. Neuron 84(2), 486-96.
  5. Hattie, John. (2009). Visible learning. A synthesis of over 800 meta-analyses relating to achievement. Routledge.
  6. Holper L., Goldin A., Shalom D., Battro A., Wolf M., & Sigman M. (2013): “The teaching and the learning brain: a cortical hemodynamic marker of teacher–student interactions in the socratic dialog”. International Journal of Educational Research 59, 1–10.
  7. McTighe, Jay & Wiggins, Grant (2013). Essential questions: opening doors to student understanding. Alexandria: Association for Supervision and Curriculum Development.
  8. Roediger III H. & Pyc M. A. (2012): “Inexpensive techniques to improve education: applying cognitive psychology to enhance educational practice”. Journal of Applied Research in Memory and Cognition 1, 242-248.
  9. Smith B. L., Holliday W. G., & Austin H. W. (2010): “Students’ comprehension of science textbooks using a question-based reading strategy”. Journal of Research in Science Teaching 47, 363–379.
  10. Stichter J. P. et al. (2009): “Assessing teacher use of opportunities to respond and effective classroom management strategies. Comparisons among high- and low-risk elementary schools”. Journal of Positive Behavior Interventions 11(2), 68-81.
  11. Tokuhama-Espinosa, Tracey (2014). Making classrooms better. 50 practical applications of mind, brain and education science. Norton.
  12. Wong R. M. F., Lawson M. J., & Keeves J. (2002): “The effects of self-explanation training on students’ problem solving in high-school mathematics”. Learning and Instruction 12, 233–262.

 

¡Eureka! El cerebro creativo en acción

1 diciembre, 2015 6 comentarios

El verdadero motor de la creatividad es el afán de descubrimiento y la pasión por el trabajo en sí. Cuando los alumnos están motivados para aprender, adquieren de forma natural las destrezas que necesitan para llevar a cabo lo que se proponen. Y su dominio de ellas es cada vez mayor a medida que sus ambiciones creativas se expanden.           Ken Robinson

Los seres humanos tenemos una enorme capacidad para ser creativos que nos permite encender la chispa del aprendizaje, a través de la emoción, introduciendo novedades útiles en una gran variedad de disciplinas que pueden estar relacionadas, por ejemplo, con la ciencia, la tecnología, la economía o el arte. Estudios recientes en neurociencia están suministrando información relevante sobre cómo se genera el pensamiento creativo y qué factores pueden ayudar a facilitarlo, lo cual tiene grandes repercusiones educativas. Y son esas investigaciones sobre la creatividad, una auténtica necesidad para la innovación en los tiempos actuales, las que queremos compartir con todos vosotros en este nuevo artículo en Escuela con Cerebro.

La creatividad

Suele considerarse la creatividad como la capacidad de generar ideas novedosas y útiles, sin embargo, existe un componente subjetivo asociado a la novedad y la utilidad de las producciones creativas. Esa es la razón por la que Kounios y Beeman (2015) definen la creatividad como la capacidad para reinterpretar algo descomponiéndolo en sus elementos y recombinando estos de forma sorprendente para alcanzar algún objetivo. Cuando este tipo de recombinación se da de forma instantánea, tenemos el llamado insight (¡eureka!) que nos permite obtener una solución de forma inconsciente y repentina (ver video anterior); pero esta combinación puede darse también a través de un proceso más gradual y consciente que se conoce como pensamiento analítico y en el que se consideran, de forma deliberada y metódica, muchas posibilidades hasta encontrar la solución. Y como veremos luego, se activan regiones cerebrales específicas en estos tipos de resoluciones diferentes.

El cerebro en acción

La creatividad constituye un constructo complejo en el que no interviene un solo hemisferio o una única región cerebral. Cuando en el laboratorio se han analizado tareas propias del pensamiento divergente en las que los participantes han de crear usos alternativos a objetos cotidianos, en donde se valora tanto la fluidez como la originalidad de las ideas, se han identificado varias redes neurales complejas que intervienen en el proceso y que activan regiones concretas del cerebro (ver figura 1). En el inicio de la tarea, se da una interacción entre una red neuronal que interviene en los procesos de visualización e imaginación, la red por defecto (corteza cingulada posterior, precúneo y lóbulo parietal inferior), con una red que permite reorientar el proceso identificando lo novedoso y relevante para la tarea cambiando la actividad de una red a otra, la red neuronal de asignación de relevancia o salience network en inglés (ínsula anterior, corteza cingulada anterior), seguidas de una mayor interacción en las fases posteriores del proceso creativo entre la red por defecto y la red ejecutiva (corteza prefrontal dorsolateral), aquella ligada a la autorregulación que nos permite focalizar la atención de forma consciente en la tarea (Beaty et al., 2015). Es decir, el pensamiento creativo implicaría la cooperación entre redes cerebrales asociadas al pensamiento espontáneo (red por defecto), el control cognitivo (red ejecutiva) y los mecanismos de recuperación de información a través de la memoria semántica (red de asignación de relevancia).

Figura 1

Insight y pensamiento analítico

El proceso de resolución a través del insight requiere una reinterpretación de la tarea desde perspectivas diferentes. Inicialmente, empezamos a trabajar con el problema de forma crítica y consciente pero si no somos capaces de resolverlo alcanzamos una fase de bloqueo en la que no sabemos cómo continuar. O quizás interrumpimos la tarea por alguna cuestión concreta. De cualquier forma, existe un parón en el proceso de resolución del problema que nos permite disfrutar o preocuparnos de otras tareas y que, debido a los mecanismos inconscientes de nuestro cerebro que siguen trabajando en el problema, puede ser interrumpido por ese ¡eureka! con el que se alcanza de forma impredecible la solución ansiada. Cuando se ha analizado este proceso en el laboratorio, se ha comprobado que en el momento de la solución se da una activación gamma (ondas cerebrales de alta frecuencia asociadas a una gran actividad cerebral) acompañadas de un incremento del flujo sanguíneo en una región del lóbulo temporal derecho que participa en la asociación de ideas remotas, como en el caso de las metáforas o los chistes, y que no se da en el caso de las soluciones analíticas (Jung-Beeman et al., 2004; ver figura 2). Asimismo, un segundo antes de que aparezca el insight y la consecuente actividad gamma, se ha identificado un patrón de actividad cerebral alfa (ondas de menor frecuencia asociadas a periodos de relajación) también en el hemisferio cerebral derecho y que son una señal de una percepción visual reducida (Kounius y Beeman, 2009). Seguramente esta es la razón por la que muchas veces oímos decir que la creatividad está lateralizada al hemisferio derecho, pero ni el insight es sinónimo de creatividad, ni esa región del lóbulo temporal derecho es la única que interviene en ese proceso de resolución sino que, como comentábamos anteriormente, existe la participación de varias redes neurales complejas en el proceso.

Figura 2

Cuando se ha analizado el cerebro de personas analíticas, se ha comprobado que existe una mayor comunicación entre el lóbulo frontal y las regiones visuales del cerebro, lo cual indica un mayor control de la atención consciente, mientras que en las personas que resuelven los problemas a través del insight existe un menor control del lóbulo frontal que les permite considerar posibilidades más inusuales. No es casualidad que se haya detectado una gran creatividad en personas con lesiones frontales (Kounius y Beeman, 2015)

En el fondo, la creatividad en la práctica necesita tanto unos procesos como otros porque en la resolución a través del insight las ideas también deben evaluarse, verificarse, mejorarse y aplicarse, lo cual requiere el trabajo más analítico del hemisferio izquierdo.

¿Cómo facilitar el insight?

Además de utilizar la estimulación transcraneal con corriente directa para mejorar la aparición de ideas felices estimulando la actividad del hemisferio derecho e inhibiendo la del izquierdo (ver video anterior), algo que no se consigue si se realiza al revés (Chi y Snyder, 2012), existen formas más accesibles para facilitar el insight. Veamos algunas de ellas:

Relajación e imaginación

Lo que hace difícil para muchas personas afrontar un problema como el de los nueve puntos (ver figura 3) es tener que cambiar la forma de pensar tan arraigada sobre objetos concretos asumiendo, como en el problema comentado, que existen reglas, límites o restricciones cuando no las hay. Y es que nuestras propias experiencias pasadas pueden suministrarnos información útil sobre ideas, creencias o expectativas pero también pueden limitar nuestra capacidad para pensar de forma flexible. Imaginar, divagar o pensar alternativas a las situaciones cotidianas en un estado calmado activará la importante red neuronal por defecto que posibilita una atención no centrada necesaria para la aparición de ideas creativas desactivando la red ejecutiva, tal como se ha comprobado en experimentos con músicos cuando improvisan (Limb y Braun, 2008).

Figura 3

Incubación

En consonancia con el periodo de relajación asociado a la actividad cerebral alfa anterior a la aparición del insight, se ha comprobado la importancia del periodo de incubación del mismo. Cuando estamos bloqueados ante un determinado problema, hacer un descanso para retomarlo posteriormente incrementa la probabilidad de resolverlo (Sio y Ormerod, 2009), algo que deberíamos explicar a nuestros alumnos. Aparcar una tarea para realizar ejercicio físico o dormir puede resultar muy beneficioso. Como ejemplo de ello, Kekulé reconoció que la idea sobre la forma cíclica de la molécula de benceno le apareció tras soñar que una serpiente se mordía la cola.

Emociones positivas

Las personas más felices suelen resolver mejor los problemas a través del insight mostrando una mayor capacidad para asociar ideas lejanas y una atención visual más abierta (Subramaniam et al., 2009). Las emociones positivas posibilitan mayor exploración, respuestas menos habituales y reflexiones novedosas. Sin embargo, la ansiedad perjudica el insight al disminuir la actividad de la corteza cingulada anterior, región importante de la red neuronal de asignación de relevancia, disminuyendo así la percepción y la capacidad para reorientar los pensamientos.

Horario no óptimo

Aunque la hora del día no suele afectar a la capacidad de los alumnos para resolver problemas analíticos, se ha comprobado que la resolución de problemas mediante insight se favorece en horarios del día no óptimos en los que el cerebro está cansado y así es más receptivo a la información inusual. Así, por ejemplo, las personas con el cronotipo “alondra” se benefician más del periodo nocturno mientras que los “búhos” resuelven mejor los problemas creativos por la mañana (Wieth y Zacks, 2011).

Entrenamiento de la creatividad

Existen indicios claros de que la creatividad puede mejorarse con el entrenamiento adecuado, que se benefician más de ello las personas normales que no aquellas con altas capacidades y que los programas que inciden en la práctica del pensamiento divergente tienen una mayor repercusión en los adolescentes que no en los adultos generando más ideas creativas y mejorando la flexibilidad cognitiva (Stevenson et al., 2014). Todos poseemos la capacidad para ser creativos, en unas disciplinas más que en otras, y como pueden activarse regiones cerebrales concretas al entrenar competencias artísticas que no con las matemáticas, por ejemplo, es lógico que las mejoras en la creatividad sean específicas de las competencias entrenadas. Por otra parte, también se ha comprobado que el conocimiento de la neurobiología de la creatividad puede mejorar la aparición de ideas creativas, algo parecido a los efectos positivos sobre el rendimiento del alumno cuando se le explica cómo funciona su cerebro favoreciendo una mentalidad de crecimiento. Un ejemplo de ello es el programa Applied NeuroCreativity que se utiliza en las escuelas de negocios de Dinamarca y en el que los alumnos se introducen en la neurociencia de la creatividad. En 8 semanas de aplicación de este entrenamiento los participantes mejoran competencias asociadas al pensamiento divergente en un 28,5% en promedio (Onarheim y Friis-Olivarius, 2013; ver figura 4).

Figura 4

¿Y en el aula?

Está claro que el pensamiento convergente domina en el aula. Sin embargo, en la vida real predominan las situaciones que admiten múltiples soluciones. Cuando planteamos a los alumnos cuestiones como la de la figura 5, comprobamos que tienen muchas dificultades para resolverla, lo cual demuestra que no están acostumbrados a resolver problemas abiertos o vinculados a situaciones reales. El entrenamiento continuo de este tipo de competencias facilitará la adquisición de hábitos mentales que también ayudarán a desarrollar la creatividad del alumno. Y ello también puede verse favorecido fomentando el trabajo cooperativo porque compartiendo las tareas los alumnos pierden, en muchas ocasiones, esos miedos tan arraigados que coartan su creatividad. Por ejemplo, los alumnos tienden a ser más creativos cuando están expuestos a las ideas de los demás (Fink et al., 2011), como en el caso de la lluvia de ideas. Aunque hay que tener en cuenta también el tipo de problema planteado: el trabajo por grupos ofrece mayor cantidad de soluciones y más originales, especialmente, cuando las tareas propuestas tienen varios apartados, mientras que el trabajo individual parece ser más efectivo cuando las tareas no presentan estas subdivisiones (Gregory et al., 2013).

Figura 5

En la práctica, hemos comprobado que hay tres formas muy útiles de fomentar el pensamiento creativo en el aula:

Actividades

Podemos proponer actividades (ver figura 6) que valoren los diferentes criterios que suelen utilizarse para evaluar la creatividad (fluidez, flexibilidad, originalidad y elaboración). Plantear cuestiones y problemas que tengan más de una solución correcta, pedir asociaciones entre ideas y reflexionar sobre sus implicaciones, hacer comparaciones y similitudes o encontrar múltiples usos alternativos a objetos o situaciones constituye una necesidad.

Figura 6

Proyectos

La utilización de metodologías inductivas que proponen retos y preguntas (ver figura 7), como en el caso del aprendizaje por indagación o el basado en problemas o proyectos, fomenta un aprendizaje activo y autónomo que favorece el pensamiento crítico y creativo. De esta forma es más fácil integrar distintas disciplinas, priorizar el aprendizaje de competencias (entre ellas el pensamiento crítico y el creativo) y vincularlo a situaciones reales.

Figura 7

Artes

La integración de las actividades artísticas en cada una de las materias curriculares (ver figura 8), asumiendo una perspectiva transdisciplinar, es una estupenda forma de fomentar la creatividad y de desarrollar un pensamiento más profundo. Las artes enseñan a los niños que los problemas reales suelen tener más de una solución posible, que es necesario analizar las tareas desde diferentes perspectivas, que la imaginación es una poderosa guía en los procesos de resolución o que no siempre existen reglas definidas cuando tienen que tomar decisiones (Eisner, 2004).

Figura 8

Tal como plantean Ken Robinson y Lou Aronica (2015), hay muchos mitos respecto a la creatividad que debemos desterrar. Porque ya sabemos que la creatividad es una capacidad que nos caracteriza como seres humanos, que se manifiesta en todas las facetas de la vida, que no está reñida con la disciplina y el control y que podemos aprender a ser creativos. Cultivar la creatividad constituye un reto apasionante para cualquier profesor y conocer cómo funciona el cerebro facilita mucho el proceso.

Jesús C. Guillén

.

Referencias:

  1. Beaty R. E. et al. (2015): “Default and executive network coupling supports creative idea production”. Scientific Reports 5 (10964), 17 Jun.
  2. Chi R. P. & Snyder A. W. (2012): “Brain stimulation enables the solution of an inherently difficult problema”. Neuroscience Letters 515, 121-124.
  3. Eisner, Eliot W. (2004). El arte y la creación de la mente: El papel de las artes visuales en la transformación de la conciencia. Paidós.
  4. Fink A. et al. (2011): “Stimulating creativity via the exposure to other people’s ideas”. Human Brain Mapping 33(11), 2603-2610.
  5. Gregory E. et al. (2013): “Building creative thinking in the classroom: from research to practice”. International Journal of Educational Research 62, 43–50.
  6. Hardiman, Mariale (2012). The brain-targeted teaching model for 21 st-century schools. Corwin.
  7. Jung-Beeman et al. (2004): “Neural activity when people solve verbal problems with insight”. Plos Biology 2(4), 500-510.
  8. Kounios J. & Beeman M. (2009) “The Aha! Moment: the cognitive neuroscience of insight. Current Directions in Psychological Science, 18(4), 210-216.
  9. Kounios, John & Beeman, Mark (2015). The eureka factor: creative insights and the brain. William Heinemann.
  10. Limb C. J. & Braun A. R. (2008): “Neural substrates of spontaneous musical performance: an fMRI study of jazz improvisation”. PLoS ONE 3(2): e1679.
  11. Onarheim B. & Friis-Olivarius M. (2013): “Applying the neuroscience of creativity to creativity training”. Frontiers in Human Neuroscience 7(656).
  12. Robinson, Ken & Aronica, Lou (2015). Escuelas creativas. La revolución que está transformando la educación. Grijalbo.
  13. Sio U. N. & Ormerod T. C. (2009): “Does incubation enhance problem-solving? A metaanalytic review”. Psychological Bulletin 135, 94–120.
  14. Stevenson C. E. et al. (2014): “Training creative cognition: adolescence as a flexible period for improving creativity”. Frontiers in Human Neuroscience 8 (827).
  15. Subramaniam K. et al. (2009): “A brain mechanism for facilitation of insight by positive affect”. Journal of Cognitive Neuroscience 21(3), 415-432.
  16. Wieth M. B. & Zacks R. T. (2011): “Time of day effects on problem-solving: when the non-optimal is optimal”. Thinking & Reasoning 17(4), 387-401.

El cerebro lector: algunas ideas clave

Cuanto antes se automatice la lectura, más podrá el niño concentrar su atención en comprender lo que lee y volverse así un lector autónomo, tanto para aprender otras cosas como para su propia diversión.

Stanislas Dehaene

La lectura constituye una de las actividades más asequibles para mantener una buena salud cerebral porque en ese proceso intervienen muchas funciones cognitivas diferentes, como la percepción, la atención, la memoria o el razonamiento. Al leer, se activa una gran cantidad de circuitos neuronales y regiones concretas del cerebro (ver figura 1) que nos permiten, en milésimas de segundo, reconocer las letras, combinarlas para formar grafemas y palabras, asignarles sonidos para poder pronunciarlas y dotarlas de significado.

El aprendizaje de la lectura es una de las áreas de investigación en neurociencia que ha suministrado más información novedosa con implicaciones pedagógicas en los últimos años. Y es esa información la que queremos compartir con todos vosotros en este nuevo artículo en Escuela con Cerebro, especialmente las investigaciones dirigidas por uno de los grandes neurocientíficos de esta época: Stanislas Dehaene.

Figura 1

Leer no es natural

La lectura no constituye una actividad natural para el niño. El invento de la escritura hace 5000 años es demasiado reciente para que pueda haber influido a nivel evolutivo en nuestro cerebro por lo que, a diferencia del lenguaje hablado, constituye una habilidad que debemos aprender porque no disponemos en nuestra herencia genética de circuitos neurales específicos para la lectura. Esta es la razón por la que su aprendizaje puede ser más difícil en muchos niños, como en el caso de la dislexia. Afortunadamente, la plasticidad inherente al cerebro humano ha desarrollado un papel esencial en el reordenamiento y especialización de redes neuronales primitivas y esa misma plasticidad cerebral puede actuar como mecanismo de compensación ante las dificultades en el aprendizaje de la lectura.

Aunque la lectura es una destreza nueva para el cerebro, su aprendizaje varía según la lengua. Así, por ejemplo, en lenguas transparentes como el español, los niños requieren menos tiempo para aprender la gran mayoría de las palabras debido a que existe una correspondencia entre fonemas y grafemas (un sonido corresponde a una letra), mientras que el proceso se ralentiza en lenguas más opacas como el inglés debido a sus mayores irregularidades (Dehaene, 2015).

Los bebés, genios lingüísticos

Antes de aprender a leer, el cerebro del bebé ya está organizado para el lenguaje hablado activando, con pocos meses de edad, circuitos neurales del hemisferio izquierdo idénticos a los que activan los adultos al escuchar frases en su lengua materna (Dehaene, 2013). Los bebés son capaces, en los primeros meses, de reconocer sonidos de cualquier idioma pero antes de cumplir los dos años ya muestran preferencias por aquellos de la lengua a la que están expuestos (Kuhl, 2010). Y cuando el niño tiene dos años puede nombrar los objetos en voz alta porque tiene un sistema visual organizado que le permite identificarlos. Pero leer una palabra requiere mayor complejidad y los estudios en neurociencia revelan que para reconocer letras y palabras escritas se ha de reciclar una región específica de la corteza visual: el área visual de formación de palabras o “caja de letras del cerebro” (en inglés VWFA, visual word form area, o letterbox), una región en la que se concentra gran parte del conocimiento visual de las letras y de sus combinaciones (ver figura 2). Sin olvidar que aunque existan periodos sensibles en el aprendizaje de la lectura, un aprendizaje temprano del niño a los 3 años de edad no tiene por qué ser más eficiente que cuando se da a los siete u ocho años, por ejemplo (Tokuhama-Espinosa y Rivera, 2013).

Figura 2

Reciclaje neuronal

Las evidencias empíricas sugieren que para el aprendizaje de la lectura se necesita que una parte de las neuronas de una región que integra las áreas visuales del cerebro del niño en el lóbulo temporal izquierdo y que le sirven para reconocer objetos y rostros, la llamada “caja de letras”, se recicle para que pueda responder cada vez más a las letras y las palabras (Dehaene y Cohen, 2011). Esta importante región que interviene en un circuito de lectura universal que comprende rutas tanto fonológicas como semánticas, se activa de forma proporcional a la capacidad lectora, es decir, los lectores adultos y los niños que aprendieron a leer activan más la “caja de letras” que las personas analfabetas o los niños que no han aprendido a leer todavía (ver figura 3), respectivamente (Dehaene, 2014). Y no solo es esta región cerebral la que se desarrolla, porque aprendiendo a leer se mejoran circuitos que codifican la información visual o los sonidos de las palabras, lo cual tiene una incidencia positiva en la memoria oral.

Figura 3

Conciencia fonológica

La conciencia fonológica es una competencia esencial en el aprendizaje de la lectura que permite al niño ser consciente de los sonidos elementales, los fonemas, que componen las palabras del lenguaje hablado. En la fase inicial del aprendizaje de la lectura, en el que se va conociendo el abecedario, es imprescindible la decodificación fonológica que permitirá al niño ir articulando los fonemas que forman una sílaba (caaa-saaa) y descomponer cada palabra letra a letra (c-a.-s-a) para identificarla y conocer su significado. Cuando el proceso se vaya automatizando, el cerebro ya no necesitará descomponer la palabra letra a letra y la identificará con su representación ortográfica buscando su significado. En la práctica, puede acelerarse la adquisición de la conciencia fonológica con juegos lingüísticos como adivinanzas, rimas, rondas infantiles, etc. (Shanahan y Lonigan, 2010).

Atención, pero la adecuada

En el niño existirá una tendencia natural a interpretar la palabra como un todo. Pero se requiere una atención selectiva para poder ir identificando las letras que conforman las palabras. En la práctica, se ha comprobado que no es suficiente exponer al niño a letras sino que hay que ir enseñando de forma sistemática las correspondencias entre fonemas y grafemas para acelerar el aprendizaje de la lectura porque es lo que permite que áreas corticales terminen especializándose en el reconocimiento de las palabras escritas. Al explicar a los niños que las palabras están compuestas por letras que constituyen las unidades elementales del lenguaje hablado se activa con normalidad la “caja de letras” del cerebro y con ello el circuito de lectura universal del hemisferio izquierdo que es el más eficiente. Sin embargo, cuando se focaliza la atención en la palabra completa, la información satura la memoria de trabajo del niño y se activa una región del hemisferio derecho que es menos eficiente en el proceso de la lectura (Dehaene et al., 2015). En definitiva, el entrenamiento fonológico en el que se enfoca la atención en las correspondencias entre fonemas y grafemas parece ser el más adecuado para el aprendizaje del niño y le permite un desarrollo autónomo. Además, también se ha comprobado que es el más eficaz en el caso de niños disléxicos (Shaywitz et al., 2004).

Escritura en espejo

La confusión de letras en espejo (por ejemplo, “b” y “d”; ver figura 4) es una confusión que puede darse de forma transitoria en cualquier niño, no solo en los disléxicos, y está directamente relacionada con el reciclaje neuronal del que hablábamos anteriormente. Nuestro cerebro evolucionó desarrollando un sistema que nos permite identificar los rostros y saber que una persona es la misma vista desde la izquierda que desde la derecha. Y esta misma organización cerebral es la que hace que el niño vea letras simétricas y las identifique como iguales. Pero esta capacidad cerebral para el reconocimiento visual de caras no es útil en la escritura y se ha de producir el correspondiente reciclaje neuronal, o si se quiere el desaprendizaje en la “caja de letras del cerebro” (Dehaene et al., 2010). Y en este proceso, se ha comprobado que es muy útil enseñar a los niños ejercicios en los que vayan trazando las letras con los dedos, es decir, añadir a los estímulos visuales y auditivos la exploración háptica, a través de la práctica de los gestos de escritura, acelera el aprendizaje de la lectura (Fredembach et al., 2009) incidiendo en una ruta neural específica que no está asociada al reconocimiento de objetos sino a su orientación.

Figura 4

Automatismos

A través de la práctica, el niño automatizará el proceso de la lectura liberando espacio en su memoria de trabajo y mejorando así la eficiencia cerebral. No es casualidad que el grado de comprensión de los textos escritos por parte de los adolescentes dependa de la frecuencia de sus lecturas durante la infancia (Cunningham y Stanovich, 1997).

En los lectores expertos se activan de forma paralela dos rutas neurales de procesamiento complementarias: la fonológica, que nos permite pronunciar las palabras nuevas e intentar acceder al significado de las mismas, y la léxica, que es la que utilizamos para palabras conocidas y que nos permite recuperar de forma directa su significado (Dehaene et al., 2015). Pues bien, el niño, conforme va automatizando la lectura, convierte la decodificación fonológica de la palabra en letras en un proceso simultáneo, reconociendo con mayor rapidez las palabras frecuentes porque empieza a desarrollar la ruta léxica y así puede interpretar directamente el significado de las palabras escritas sin mediar los sonidos de la pronunciación. Según el niño aprende a leer dispone de más herramientas que le permiten entender el significado de las palabras.

¿Y en el caso de la dislexia?

A pesar de que algunos niños reciben una enseñanza adecuada y se esfuerzan mucho, tienen dificultades para aprender a leer. Y pueden desenvolverse muy bien en otro tipo de tareas.

En la actualidad sabemos que la dislexia tiene un origen genético, se da más en las lenguas opacas y está asociada a una mayor dificultad en la adquisición de la conciencia fonológica. Las neuroimágenes han revelado que existe una activación anormal en la corteza occipito-temporal izquierda, en el giro frontal inferior izquierdo o en el lóbulo parietal inferior, regiones cerebrales que intervienen en la descodificación fonológica, las representaciones fonológicas y la atención, respectivamente (Ylinen y Kujala, 2015). Y ello repercute, especialmente, en una organización deficiente de la “caja de letras del cerebro”. La buena noticia es que la gran mayoría de los niños disléxicos puede aprender a leer a través de una práctica intensiva en la que hemos de ser pacientes para enseñarles a orientar la atención hacia los grafemas, los fonemas y sus correspondencias.

Qué importante es la detección temprana de estos déficits para que podamos aplicar los correspondientes programas compensatorios. Y en los últimos tiempos se ha comprobado la eficacia de algunos programas informáticos presentados como videojuegos, como Graphogame, en el que los niños han de decidir con rapidez qué letras corresponden a los sonidos (ver figura 5). Unas cuentas horas repartidas en pocas semanas son suficientes para que mejore la “caja de letras del cerebro” de niños disléxicos o de aquellos con dificultades en el aprendizaje de la lectura pertenecientes a entornos desfavorecidos (Ojanen et al., 2015).

Figura 5

Principios fundamentales

La neurociencia ha identificado los circuitos cerebrales principales que sustentan el aprendizaje de la lectura y estos conocimientos, como tantas veces hemos comentado en Escuela con Cerebro, son compatibles con diversas estrategias educativas. Así, por ejemplo, aunque hemos visto la importancia de orientar la atención hacia los grafemas y los fonemas y no a la palabra de forma global, igual de útil será un enfoque que parte de la palabra para descomponerla en letras que, al revés, partir de las letras para componer las palabras.

Como consecuencia de todas sus investigaciones realizadas, Stanislas Dehaene (2015) ha establecido una serie de principios básicos, todos ellos igual de importantes, que pueden orientar la enseñanza de la lectura en la fase inicial en la que la decodificación fonológica adquiere un protagonismo fundamental. Estos principios que están referidos al español y que acompañamos con un brevísimo comentario son los siguientes:

  1. Principio de enseñanza explícita del código alfabético: el abecedario español funciona atendiendo a reglas simples que se han de conocer.
  2. Principio de progresión racional: hay ciertos grafemas que son prioritarios por lo que hay que enseñarlos antes.
  3. Principio de aprendizaje activo, que asocia lectura y escritura: aprender a componer las palabras y a escribirlas facilita el aprendizaje de la lectura en muchas etapas.
  4. Principio de transferencia de lo explícito a lo implícito: se ha de facilitar el proceso de automatización de la lectura.
  5. Principio de elección racional de los ejemplos y de los ejercicios: la elección de ejercicios y ejemplos ha de ser cuidadosa y debe tener en cuenta el nivel del alumno.
  6. Principio de compromiso activo, de atención y de disfrute: el contexto de aprendizaje ha de permitir que el niño se sienta seguro y motivado.
  7. Principio de adaptación al nivel del niño: el proceso de aprendizaje no puede ser mecánico sino que debe suministrar retos adecuados que permitan al niño sentirse protagonista y seguir avanzando.

En la enseñanza, muchas veces, las simples intuiciones no son suficientes para garantizar las buenas prácticas educativas y es por ello que los docentes deberíamos analizarlas y contrastarlas de forma rigurosa en el aula. Conocer los factores fisiológicos, socioemocionales o conductuales que inciden en el aprendizaje de la lectura facilitará el progreso de cada niño. Y eso es lo más importante.

Jesús C. Guillén

Referencias:

  1. Cunningham A. E. y Stanovich K. E. (1997): “Early reading acquisition and its relation to reading experience and ability 10 years later”. Deviant Psychology 33(6), 934-945.
  2. Dehaene, Stanislas (2015). Aprender a leer: de las ciencias cognitivas al aula. Siglo XXI Editores.
  3. Dehaene S. (2014): “Reading in the brain revised and extended: response to comments”. Mind & Language 29, 320-335.
  4. Dehaene S. (2013): “Inside the letterbox: how literacy transforms the human brain”. Cerebrum, June.
  5. Dehaene S. et al. (2015): “Illiterate to literate: behavioral and cerebral changes induced by reading acquisition”. Nature Review Neuroscience 16(4), 234-244.
  6. Dehaene S. y Cohen L. (2011): “The unique role of the visual word form area in reading”. Trends in Cognitive Sciences 15(6), 254-262.
  7. Dehaene S. et al. (2010): “Why do children make mirror errors in reading? Neural correlates of mirror invariance in the visual word form area”. Neuroimage 49(2), 1837-1848.
  8. Fredembach B. et al. (2009): “Learning of arbitrary association between visual and auditory novel stimuli in adults: the ‘bond effect’ of haptic exploration”. PLoS One 4(3): e4844.
  9. Kuhl P. K. (2010): “Brain mechanisms in early language acquisition”. Neuron Review 67, 713-727.
  10. McCandliss B. D. (2010): “Educational neuroscience: the early years”. PNAS 107(18), 8049-8050.
  11. Ojanen E. et al. (2015): “GraphoGame – a catalyst for multi-level promotion of literacy in diverse contexts”. Frontiers in Psychology 6(671), June.
  12. Shanahan T. y Lonigan C. J. (2010): “The National Early Literacy Panel: a summary of the process and the report”. Educational Researcher 39(4), 279-285.
  13. Shaywitz B. A. et al. (2004): “Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention”. Biological Psychiatry 55(9), 926-933.
  14. Tokuhama-Espinosa T. y Rivera G. M. (2013). Estudio del arte sobre conciencia fonológica. CEEC/SICA.
  15. Ylinen S. y Kujala T. (2015): “Neuroscience illuminating the influence of auditory or phonological intervention on language-related deficits”. Frontiers in Psychology 6(137), February.
Categorías:Neurodidáctica Etiquetas:, ,

Neuronas espejo, empatía, imitación y desarrollo en la primera infancia

9 octubre, 2015 3 comentarios

Los niños necesitan más modelos que críticas

Joseph Joubert

La imitación es una capacidad innata. Los bebés de apenas unos días de vida son capaces de imitar movimientos faciales como abrir la boca o sacar la lengua (conductas que están en el repertorio del recién nacido), lo cual indica que la capacidad para usar equivalencias intermodales está presente desde el nacimiento (Meltzoff y Moore, 1977).

Actividad predictiva del cerebro de los bebés

En el primer año de vida, los bebés utilizan áreas de su cerebro que participan en sus propias habilidades motrices con el objetivo de percibir las acciones de otras personas (Southgate et al., 2009). Así, el sistema de neuronas espejo permitiría al observador, en este caso el bebé, comprender una acción a través de un sistema de simulación motora interna.

En el estudio citado, Southgate y sus colaboradores registraron la actividad cerebral de 15 niños de 9 meses de edad mediante electroencefalogramas (EEG). El experimento consistió en dos fases: en la primera fase los niños estaban sentados frente a un escenario con las cortinas cerradas. Un brazo mecánico que sostiene un juguete aparece a través de la cortina y el niño puede cogerlo y jugar brevemente con él (figura 1). En una segunda fase aparece un objeto sobre el suelo del escenario y, en menos de un segundo, la mano del experimentador aparece y retira el objeto.

Figura1

Los EEG mostraron una actividad similar en el cerebro del bebé cuando el experimentador agarró el objeto a la mostrada cuando él mismo cogía el juguete. Además, cuando los bebés ya habían observado al experimentador agarrando el juguete, esa misma actividad cerebral también se produjo justo antes de dicha acción (figura 2).

El hecho de que la actividad en el cerebro de los bebés sea predictiva sugiere que utilizan su propio sistema motor con el fin de averiguar cómo se desarrollará la acción de otra persona. Esta puede ser la base para comenzar a participar en actividades de colaboración con los demás y podría ser uno de los primeros pasos hacia la socialización.

Figura 2

Mapas somatotópicos en bebés: explicando el aprendizaje por imitación

Es evidente que los bebés son capaces de aprender a través de la observación. Para ello necesitan asignar en su propio cuerpo los comportamientos que observan en otros con la finalidad de poder imitarlos. Comprender los mapas somatotópicos puede ayudarnos a explicar cómo los niños aprenden tan rápidamente mediante la imitación.

Los mapas del cuerpo en el cerebro son una parte importante de la forma en que construimos un sentido implícito de nosotros mismos a través de la sensación de tener un cuerpo y ver y sentir cómo nuestros cuerpos se mueven; estos mapas facilitan las conexiones que construimos con otras personas incluso en los primeros meses de vida (Marshall y Meltzoff, 2015).

Ritmo mu y neuronas espejo

El ritmo mu es una oscilación que se puede observar en el electroencefalograma, incluso desde bebés muy pequeños, en la banda de frecuencia de 8-13 y de 15-25 Hz en ausencia de movimiento. Este ritmo se da específicamente en la corteza sensoriomotora contralateral, durante la preparación del movimiento, o bilateral, durante la ejecución del movimiento. El ritmo mu se desincroniza, suprime o disminuye cuando el sujeto realiza un movimiento pero también cuando observa o imagina el movimiento (Pineda, 2005), lo cual, según el autor, supondría una traducción de lo que se ve y lo que se oye hacia lo que se hace, componente necesario para el aprendizaje por imitación.

Estudios del grupo de Ramachandran (2005) en la Universidad de California han demostrado que los sujetos normales muestran una supresión del ritmo mu en regiones sensoriomotoras cuando realizan o cuando observan a otro realizar actos motores específicos. Esta modificación se ha correlacionado con la activación de las neuronas de la región premotora que corresponden al sistema de neuronas espejo, es decir, la supresión del ritmo mu sería válida como reflejo de la actividad de las neuronas espejo.

En un experimento realizado por Saby, Meltzoff y Marshall (2013) se estudió mediante EEG, centrándose en el ritmo mu, cómo el cerebro infantil procesa las acciones observadas. Seleccionaron un grupo de 32 bebés de 14 meses de edad y se asignaron al azar a uno de los dos grupos independientes: 1. Observar mano (n=15) y 2. Observar pié (n=17). A los participantes se les colocó una gorra equipada con sensores y permanecieron sentados en el regazo de su cuidador. El experimentador se sentó frente a ellos con un juguete desconocido para los niños que se podía activar con una sola mano o pie. Cuando se presionaba la parte superior del objeto se activaban estímulos sonoros y visuales que desaparecían al cesar la presión (figura 3).

Figura3

Los resultados obtenidos fueron que el ritmo mu mostró una mayor desincronización sobre las áreas de la mano para los bebés que observaban acciones de la mano, y una mayor desincronización sobre la zona del pie para los que observaban las acciones de los pies (figura 4).

Figura 4

La diferencia significativa en la distribución espacial de la respuesta de ritmo mu sugiere una organización somatotópica de las respuestas cerebrales de los bebés a la observación de la acción: los procesos cerebrales implicados en la observación de las acciones de otros están estrechamente vinculados a los procesos que intervienen en la producción de las propias acciones, es decir, los mapas somatotópicos estarían vinculados al aprendizaje por imitación.

Reflexiones y aplicaciones prácticas

A nuestro entender, todo lo expuesto no hace más que corroborar la frase con la que comenzábamos: “los niños necesitan más modelos que críticas”. Nos gustaría que sirviera de reflexión para analizar todas nuestras acciones con los niños (tanto en el aula como fuera de ella).

Debemos establecer con ellos empatía cognitiva, empatía motora y empatía emocional o, dicho de manera más práctica: nos ponemos a su altura para que puedan mirarnos mientras les hablamos, cuidamos nuestros movimientos porque estamos modelando los suyos, no es necesario que guiemos su mano para que ejecuten una acción, simplemente seamos su modelo, cuando trabajamos aspectos psicomotores no corregimos ni damos órdenes sino que hacemos el patrón correcto junto a ellos, acompañamos los mensajes verbales con nuestro cuerpo (les facilitará la comprensión), si queremos calmar a un niño antes debemos calmarnos a nosotros mismos, si queremos que bajen la voz no podemos gritar… y lo que no debemos olvidar nunca es hacerlo siempre con una sonrisa, ellos nos la devolverán.

Milagros Valiente

Referencias:

  • Marshall, P.J., Meltzoff, A.N. (2015): “Body maps in the infant brain”. Trends in Cognitive Sciences 19, 499-505.
  • Meltzoff, A.N. and Moore, M.K. (1977): “Imitation of facial manual gestures by human neonates”. Science, New Series 198 (4312), 75-78.
  • Oberman, L.M., Hubbard, E.M., Mccleary, J.P., Altschuler, E.I., Ramachandran, V.S. & Pineda, J.A. (2005): “EEG evidence for mirror neuron dysfunction in autism spectrum disorders”. Cognitive Brain Research 24, 190-198.
  • Pineda, J.A. (2005): “The functional significance of mu rhythms: traslating ‘seeing’ and ‘hearing’ into ‘doing’ ”. Brain Research Reviews 50, 57-68.
  • Saby, J.N., Meltzoff, A.N., Marshall, P.J. (2013): “Infants´ somatotopic neural responses to seeing human actions: I´ve got you under my skin”. PLoS One, 8(10), e77905.
  • Southgate, V., Johnson, M.H., Osborne, T. & Csibra, G. (2009): “Predictive motor activation during action observation in human infants”. Biology Letters 5, 769-772.

Neuromitos en educación: el aprendizaje desde la neurociencia

29 septiembre, 2015 6 comentarios

Los nuevos tiempos y las nuevas necesidades educativas requieren más que nunca que los profesores nos convirtamos en investigadores en el aula capaces de analizar y evaluar con espíritu crítico cómo inciden las metodologías utilizadas en el aprendizaje de los alumnos.

Mi libro

Nos complace informaros que esta semana sale a la venta el libro Neuromitos en educación: el aprendizaje desde la neurociencia coordinado por Anna Forés (Descubrir la neurodidáctica, junto a Marta Ligioiz) y en el que Escuela con Cerebro ha participado activamente junto a otros profesores que también forman parte del Posgrado de Neuroeducación de la Universidad de Barcelona1 que comienza el próximo viernes.

El libro, cuyo prólogo ha escrito Pere Estupinyá (El ladrón de cerebros), analiza en doce capítulos (ver índice de contenido) algunos de los neuromitos más arraigados en entornos educativos, tal como revelan los últimos datos2, como el que propone que se mejora el aprendizaje de los alumnos cuando reciben la información según su estilo de aprendizaje favorito (visual, auditivo o cinestésico), el que hace referencia a la dominancia e independencia de los hemisferios cerebrales que explicaría las preferencias de los alumnos en el aprendizaje y que tendría que orientar la enseñanza o el famoso programa Brain Gym que promueve la práctica de sencillos ejercicios de coordinación para mejorar las funciones cerebrales y con ello el aprendizaje en una gran variedad de disciplinas académicas.

Mediante un estilo divulgativo sencillo que hace accesible la lectura a cualquier persona interesada en cuestiones educativas, se examinan cuáles son las evidencias empíricas que provienen de las investigaciones científicas y se sugieren en todos los capítulos diversas estrategias pedagógicas que se pueden utilizar tanto en el aula como en casa para mejorar las prácticas educativas. Así, por ejemplo, se analizan cuestiones que tienen una incidencia directa en el aprendizaje como las emociones, la motivación, la atención o la creatividad y otras que mejoran el desarrollo cognitivo de los niños y adolescentes y que están en plena consonancia con la naturaleza social del ser humano como el ejercicio físico, el juego o las artes. E incluso otras relacionadas con nuestro sentido numérico innato, el sueño o cómo fomentar la imaginación que interesarán tanto a docentes como a padres.

Índice

Para poder aplicar de forma adecuada en el aula o en otros entornos educativos las investigaciones que provienen de la neurociencia se han de conocer los principios científicos en que se basan, el lugar de publicación y los procedimientos experimentales seguidos y cómo se evalúan esas ideas desde la perspectiva educativa. Facilitar ese proceso de transmisión de la información es uno de los objetivos del libro y desde esa perspectiva podría ser muy útil la figura del nuevo neuroeducador que seguramente será más eficaz si se trata de un propio profesor capaz de entender y trasladar el lenguaje y los conocimientos suministrados por la neurociencia al aula.

Como hemos comentado en anteriores entradas en Escuela con Cerebro, la nueva educación requiere un proceso de revisión, actualización e innovación de las prácticas educativas que permita atender las necesidades actuales de los niños y adolescentes. Y en ese proceso, el profesor, como acompañante y gestor del aprendizaje de sus alumnos, sigue siendo muy importante. Pero un profesor que es capaz de analizar con espíritu crítico lo que hace, que comparte sus experiencias y coopera con otros compañeros, que es flexible y cambia las estrategias utilizadas cuando es necesario o que asume con naturalidad el error porque forma parte de su proceso de aprendizaje, no solo del de los alumnos. El libro Neuromitos en educación facilita el proceso de conversión en alumnos de nuestra propia enseñanza y nos ayudará a amplificar el entusiasmo por lo que hacemos. Conocer cómo funciona nuestro cerebro es una buena inversión.

Jesús C. Guillén

1 Una alternativa al posgrado comentado es el máster totalmente online sobre neurodidáctica de la Universidad Rey Juan Carlos:

http://masterneurodidactica.com/

https://www.urjc.es/estudiar-en-la-urjc/admision/1349-master-en-neurodidactica

2 Tardiff, E., Doudin, P.A., & Meylan, N. (2015): “Neuromyths among teachers and student teachers”. Mind, Brain & Education 9(1), 50-59.

Categorías:Comunicaciones Etiquetas:,

Ajedrez en el aula: una forma lúdica de aprender a pensar

16 septiembre, 2015 5 comentarios

El juego constituye un mecanismo natural imprescindible para el aprendizaje. De forma espontánea, a través del juego libre, los niños aprenden a tomar decisiones, a resolver problemas, o a relacionarse con los demás. Y desde la perspectiva educativa también puede resultar muy útil el juego estructurado o dirigido, a medio camino entre el juego libre y la enseñanza directa, para ir fomentando un aprendizaje más reflexivo. Un ejemplo de ello lo representa el ajedrez, un juego con unas reglas definidas que se han de aceptar e interiorizar en el que confluyen aspectos relacionados con el deporte, la ciencia o el arte y que estudios recientes sugieren que su práctica regular puede beneficiar el desarrollo personal y académico del alumno: el análisis detallado de las posibles posiciones que pueden originarse en el tablero requiere concentración, autocontrol, pensamiento crítico o mantenimiento de la información visual en la memoria de trabajo, todas ellas acciones relacionadas con las llamadas funciones ejecutivas del cerebro que nos permiten tomar las decisiones adecuadas y que tienen una incidencia directa en el rendimiento académico del alumno. Y es que en el ajedrez, al igual que en la vida, hay que planificar y actuar con un tiempo limitado.

¿Qué ocurre en el cerebro del ajedrecista?

En Escuela con Cerebro hemos comentado en muchas ocasiones la importancia de la práctica regular (es tarea del profesor variar y espaciar los contenidos para no desmotivar) en el proceso de aprendizaje porque es así como se produce este a nivel neuronal: en el cerebro humano, tremendamente plástico, se aplica aquello de “úsalo o piérdelo”. La práctica continuada permite adquirir una serie de automatismos que hacen que exista una mayor eficiencia cerebral en los expertos que en los iniciados, ya sea en matemáticas, en música o, por ejemplo, en ajedrez.

Los estudios con neuroimágenes han revelado patrones de activación cerebral al jugar al ajedrez: el lóbulo occipital se activa debido al procesamiento visual mientras que el lóbulo parietal refleja el control atencional y la orientación espacial. Sin embargo, los ajedrecistas profesionales (Grandes Maestros y Maestros Internacionales) activan más el lóbulo frontal, lo cual indica procesos de razonamiento de mayor complejidad y la utilización de la memoria de forma más selectiva al acceder a la información consolidada, mientras que los aficionados activan más el lóbulo temporal y el hipocampo, lo cual sugiere una necesidad de codificar y almacenar la información novedosa que aparece en el tablero (Bart y Atherton, 2004).

Asimismo, se ha comprobado que los ajedrecistas profesionales desactivan mucho más que los iniciados la red neuronal por defecto (activación cerebral cuando nuestra mente divaga o estamos con el “piloto automático”; ver figura 1) e incrementan las conexiones funcionales entre los ganglios basales, el tálamo, el hipocampo y otras regiones pertenecientes al lóbulo parietal y al temporal (Duan et al., 2012 y Duan et al., 2014), sugiriendo todo ello que la práctica regular del ajedrez mejora el rendimiento cerebral permitiendo tomar mejores decisiones haciendo un uso adecuado de la memoria.

Figura 1

¿Por qué introducir el ajedrez en el aula?

Los beneficios que pueden obtener los alumnos cuando participan en programas de ajedrez bien estructurados en horario extraescolar pueden ser tanto cognitivos como socioemocionales.

En un estudio reciente realizado en colegios de Tenerife (poco tiempo después el Parlamento de Canarias aprobó por unanimidad incluir el ajedrez en la enseñanza primaria y secundaria) en el que participaron 170 alumnos con edades entre los 6 y los 16 años, se comprobó que aquellos que formaron parte de un programa de ajedrez semanal obtuvieron mejoras cognitivas y conductuales respecto a los alumnos que eligieron el fútbol y el baloncesto como actividades extraescolares (Aciego et al., 2012). Las mejoras cognitivas se vieron reflejadas en pruebas de atención, autocontrol, organización perceptiva, rapidez, planificación y previsión, mientras que las mejoras conductuales se percibieron en las relaciones con los demás, en la capacidad para afrontar los problemas o en la satisfacción mostrada ante los estudios, hecho confirmado tanto por los profesores como por los propios alumnos. Los autores de esta investigación comentaron que el ajedrez constituye una herramienta pedagógica muy potente porque mejora las capacidades cognitivas del niño o del adolescente y, además, incide muy positivamente en su desarrollo personal y social.

Aunque la anterior investigación refleja la evolución positiva del alumno durante el curso escolar, podría objetarse, debido a su diseño cuasi experimental en el que no existe una asignación aleatoria de los participantes a los grupos de control y experimental, que la mejora de las capacidades cognitivas del alumno no se debe al programa de ajedrez si no que los alumnos que lo eligieron voluntariamente ya poseían esas mejores capacidades. Sin embargo, ya existen estudios con diseños experimentales aleatorizados que confirman los resultados anteriores, incluso cuando estos programas se han integrado directamente en el currículo escolar, incidiendo positivamente en disciplinas concretas como en el caso de las matemáticas.

Kazemi y sus colaboradores (2012) realizaron un estudio en escuelas iraníes en el que participaron alumnos de primaria y secundaria. El grupo experimental estaba formado por 86 alumnos elegidos aleatoriamente que participaron en un programa de ajedrez que duró 6 meses mientras que el grupo de control lo formaban 94 alumnos también elegidos al azar. Los resultados reflejaron una clara mejora de los participantes del programa durante el curso, a diferencia de los integrantes del grupo de control, tanto en pruebas matemáticas (ver figura 2) como en otras específicas que evaluaban las capacidades metacognitivas de los alumnos.

Figura 2

Estos resultados han sido confirmados por otro estudio posterior realizado en las ciudades italianas de Asti y Bérgamo en el que participaron 568 niños, con edades entre los 8 y los 10 años, en el que 412 de ellos recibieron clases de ajedrez como una asignatura más durante todo el curso académico (Trinchero, 2013). A diferencia del grupo de control, los alumnos que recibieron el entrenamiento de ajedrez obtuvieron una mejora modesta pero estadísticamente significativa en pruebas matemáticas de resolución de problemas que era proporcional al nivel ajedrecístico alcanzado durante el curso. Estos resultados fueron justificados por el propio autor atendiendo a que el ajedrez permite a los alumnos mejorar su capacidad de concentración, la cual es necesaria para leer e interpretar de forma adecuada los enunciados de los problemas, y adquirir una mayor capacidad metacognitiva que posibilita análisis y evaluaciones más rigurosos durante el proceso de resolución. Y estas mismas mejoras en el contexto de las competencias matemáticas pueden darse también en alumnos con necesidades educativas especiales (Barret y Fish, 2011).

En una extensa revisión realizada por Nicotera y Stuit (2014) sobre los estudios publicados hasta la fecha, los cuales han sido clasificados atendiendo a la calidad del diseño experimental (el nivel 1 corresponde al diseño controlado aleatorizado que es el de más calidad), han encontrado efectos estadísticos positivos de los programas de ajedrez integrados en el currículo escolar que han evaluado pruebas cognitivas (figura 3) o los efectos sobre el rendimiento académico y las matemáticas (figura 4). En la práctica, cuando la medida estadística del tamaño del efecto supera el valor de 0,40 se considera efectiva la intervención..Figura 3

Figura 4

Aunque los resultados de los estudios recientes son positivos, estamos a la espera de nuevas investigaciones que se están realizando en España y en Inglaterra. En concreto, el estudio de Inglaterra corresponde a una evaluación del programa Chess in Schools que asignará de forma aleatoria 100 escuelas de primaria de diversas ciudades inglesas a los correspondientes grupos experimental y de control (50 y 50) y en el que intervendrán 3000 alumnos aproximadamente.

En la práctica

Aunque se han de completar las primeras evidencias empíricas que disponemos, el niño o el adolescente, jugando de forma regular a ajedrez, parece mejorar toda una serie de competencias cognitivas y socioemocionales que son imprescindibles para su buen desempeño académico pero también para la vida (ver video 2). El ajedrez es un recurso educativo que va a permitir estimular procesos como la atención, la memoria, la concentración, la creatividad o el razonamiento por lo que el verdadero objetivo de integrarlo en el currículo no es el de formar ajedrecistas si no el de aprovechar la mejora de estas habilidades comentadas en cualquier disciplina académica o situación de la vida, algo que debe compartirse desde el inicio con las familias.

El juego del ajedrez está al alcance de cualquier alumno pero hay que respetar su proceso de maduración personal e ir adaptando de forma progresiva las tareas que van facilitando su aprendizaje. En ese proceso, es muy importante el papel del profesor como orientador y suministrador de retos, la utilización de materiales que favorezcan la reflexión o estructurar el aula como un espacio lúdico en el que el alumno es un protagonista activo del aprendizaje. Y ello no solo se puede facilitar dedicando un tiempo semanal, tal como se hace con cualquiera de las asignaturas tradicionales, sino que también se puede fomentar disponiendo de espacios lúdicos dentro del recinto escolar dotados con el debido material que permitan desarrollar a los alumnos todo su potencial creativo jugando. Porque jugando se aprende a pensar y mucho más.

Jesús C. Guillén

Referencias:

  1. Aciego R. et al. (2012): “The benefits of chess for the intellectual and social-emotional enrichment in schoolchildren”. The Spanish Journal of Psychology 15(2), 551–559.
  2. Barrett D. & Fish W. (2011): “Our move: using chess to improve math achievement for students who receive special education services”. International Journal of Special Education 26,181–193.
  3. Bart W. & Atherton M. (2004): “The neuroscientific basis of chess playing: applications to the development of talent and education” in Paper Presented at the “Learning to Know the Brain Conference” (Amsterdam).
  4. Duan, X. et al. (2012): “Large-scale brain networks in board game experts: insights from a domain-related task and task-free resting state”. PLoS ONE 7.
  5. Duan, X. et al. (2014): “Functional organization of intrinsic connectivity networks in Chinese chess experts”. Brain Research 1558, 33–43.
  6. Kazemi F. et al. (2012): “Investigation of the impact of chess play on developing meta-cognitive ability and math problem-solving power of students at different levels of education” in 4th International Conference of Cognitive Science (ICCS 2011). Procedia-Social and Behavioral Sciences 32, 372–379.
  7. Nicotera A. & Stuit D. (2014). Literature Review of Chess Studies. Chess Club and Scholastic Center of Saint Louis.
  8. Trinchero R. (2013): “Can chess training improve Pisa scores in mathematics? An experiment in Italian primary school”. Paris, Kasparov Chess Foundation Europe.
Seguir

Recibe cada nueva publicación en tu buzón de correo electrónico.

Únete a otros 17.676 seguidores