Buscar resultados

Keyword: ‘video juegos’

La base neuronal de los videojuegos

Los adolescentes que pasan delante de los videojuegos muchas horas tienen estructuras y niveles de actividad diferentes en zonas del cerebro ligadas a la recompensa y la dopamina, lo que sugiere que puede llegar a ser una adicción.

Esta es la conclusión a la que han llegado los científicos que han elaborado el estudio titulado “The neural basis of video gaming“, publicado por la revista Translational Psychiatry.

Este estudio se ha centrado en 150 adolescentes de 14 años y los resultados son sorprendentes por la modificación de las estructuras cerebrales en regiones donde la dopamina actua. Estas conclusiones abren el camino a futuras acciones terapéuticas en relación a la adicción de las consolas.

David Fernández

Categorías:Neurociencia Etiquetas: , ,

Neuroeducación y lectura

Leer significa activar un amplio arco cognitivo que involucra la curiosidad, la atención, el aprendizaje y la memoria, la emoción, la consciencia y el conocimiento. Es quizás el mejor medio para construir un puente definido entre humanidades y ciencia.

Francisco Mora

Aprovechamos la publicación del último libro de Francisco Mora (Neuroeducación y lectura. De la emoción a la comprensión de las palabras), cuya lectura recomendamos, por supuesto, para analizar algunas de las ideas que expone el gran neurocientífico español, muchas de las cuales tienen grandes implicaciones educativas. Aprovechamos también para complementar esa información, y la que suministramos en un artículo anterior (El cerebro lector: algunas ideas clave), con algunos estudios relevantes sobre la temática.

Genética vs cultura

A diferencia del lenguaje oral, la lectura no tiene una base genética y requiere un aprendizaje explícito en el que no existen periodos sensibles. En condiciones normales crecemos en un entorno social que nos permite desarrollar el habla, ya que nuestro cerebro está preparado para ello fruto de un proceso evolutivo continuo de más de dos millones de años o, si se quiere, nuestro cerebro dispone de los circuitos neuronales del lenguaje que nos posibilitarán hablar de forma natural al crecer en un entorno social, salvo disfunciones concretas. Sin embargo, leer es un invento cultural que nació hace unos 6000 años, un periodo de tiempo muy pequeño para que los genes hayan incorporado la lectura en su estructura codificada. Todo ello conlleva que leer requiere un aprendizaje explícito que puede darse en cualquier etapa de la vida, a partir de los 5-6 años, en promedio, aunque ese aprendizaje se optimizará en los primeros años de la infancia (ver figura 1; Dehaene et al., 2015) en los que el cerebro muestra una mayor plasticidad para reciclar circuitos, especialmente los de la corteza visual, y reorientarlos hacia otra actividad, tal como explicaremos luego. El lenguaje oral depende casi exclusivamente de los mecanismos auditivos, mientras que la lectura depende de la visión y la audición (también del tacto en personas ciegas). En la práctica, la alfabetización crea una nueva puerta de entrada visual hacia los circuitos del lenguaje.

Figura 1. La activación de la caja de letras del cerebro depende del número de palabras leídas por minuto. Es mayor en personas que aprendieron a leer en la infancia, menor en las que aprendieron en la adultez y casi nula en aquellas que no saben leer (Dehaene et al., 2015).

Desde la perspectiva neuroeducativa, hay dos cuestiones especialmente relevantes. La primera hace referencia a que cada cerebro se desarrolla de forma específica, por lo que las rutas neurales que intervienen en el aprendizaje de la lectura madurarán de forma diferente para cada niña o niño. Ello nos lleva a una de las cuestiones educativas más trascendentes: la atención a las necesidades específicas de cada estudiante. La segunda está vinculada al papel que desempeña la emoción en los procesos cognitivos. Hoy ya sabemos que no constituyen dos mundos mentales independientes. El inicio de la lectura en la infancia tiene que ser un proceso placentero. Lo sabemos, cuando estamos motivados aprendemos más y mejor. Ello requiere tener en cuenta los intereses de cada niña o niño para que la lectura sea un descubrimiento feliz. Como analizaremos a continuación, si quieres que tu alumnado o tus hijos se eduquen como lectores, deberán decodificar con facilidad, comprender lo que leen y estar motivados para la lectura.

Leyendo en el cerebro

La aparición de la lectura fue posible debido a la existencia previa de los sustratos neurales del lenguaje, que en la mayoría de las personas se localizan en el hemisferio cerebral izquierdo. Aunque sabemos que el hemisferio derecho también participa en cuestiones lingüísticas como en el caso de la prosodia (la melodía de la frase) o en la interpretación de metáforas, inferencias…, por ejemplo. Los estudios con neuroimágenes han identificado tres sistemas neuronales imprescindibles para la lectura (ver Banich y Compton, 2018), interrelacionados entre ellos, que conectan las áreas visuales con las del lenguaje (ver figura 2):

Figura 2. Regiones cerebrales que intervienen en las rutas fonológicas y léxicas que nos permiten leer. La región crítica que interviene en ambas es el área visual de formación de palabras (visual word form area) o “caja de letras del cerebro” (Banich y Compton, 2018).

1. Sistema ventral

Está ubicado en la corteza occipital y temporal. Es el sistema de procesamiento visual que permite escanear la palabra, letra a letra (p-e-r-r-o) gracias al área visual de formación de palabras o “caja de letras del cerebro” (en inglés, VWFA, visual word form area), una especie de nodo crítico alrededor del giro fusiforme que conecta de forma bidireccional las áreas visuales del cerebro con las áreas del lenguaje y que el correspondiente aprendizaje permitirá traducir la información visual de las palabras en sonidos y significados. Las evidencias demuestran que esta área visual está especializada en el reconocimiento de objetos y rostros, pero la lectura reciclará parte de esta región para identificar las letras (tanto su tamaño, forma o posición), desplazándose la identificación de rostros y objetos a una región homóloga del hemisferio derecho (la especialización de la corteza visual es lenta y a los 6 o 7 años todavía no se ha completado; Dehaene-Lambertz et al., 2018). Esta lateralización no se da cuando aparecen las dificultades lectoras. La actividad reducida de este sistema ventral en el hemisferio izquierdo frente a palabras escritas es un marcador universal de las dificultades de lectura en idiomas tan dispares como el español, inglés, hebreo o chino (Rueckl et al., 2015; ver figura 3).

Figura 3.  Convergencia de redes neurales ante palabras escritas (en azul) y habladas (en verde) en las distintas lenguas evaluadas (Rueckl et al., 2015).

Por cierto, en el caso de lectores ciegos que aprendieron braille, la caja de letras del cerebro está situada casi en el mismo lugar que en el resto de lectores.

Por otra parte, una vez conformadas las palabras en la caja de letras del cerebro pasan al sistema límbico (a través de la amígdala) adquiriendo un significado emocional inconsciente antes de su procesamiento semántico en los sistemas dorsal y anterior. Se han identificado rutas neurales concretas que conectan el sistema límbico con las regiones ventrales del lóbulo temporal y el frontal (fascículo uncinado).

2. Sistema dorsal (territorio de Wernicke)

Forma parte de los lóbulos parietal (giro angular y giro supramarginal) y temporal (área de Wernicke). En este sistema se da la decodificación grafema-fonema, es decir, es un sistema de procesamiento auditivo que nos permitirá pronunciar la palabra, letra a letra (p-e-rr-o), identificando los sonidos correspondientes. Y parece que este sistema dorsal no solo participa en la conversión de los aspectos ortográficos en sus formas fonológicas, sino que también lo hace en la semántica o significado de las palabras.

3. Sistema anterior (territorio de Broca)

Este sistema está localizado en el lóbulo frontal, permitiendo la integración de la información para producir significado (el perro es un animal que ladra). Las redes neuronales de este territorio (giro frontal inferior y área de Broca) son claves en la construcción del lenguaje (sintaxis) y en la elaboración del vocabulario (léxico). Envían la información auditiva de las palabras generada en el sistema dorsal a las áreas motoras frontales, en donde se elaboran los programas motores que se remitirán a las cuerdas vocales o a los músculos de los dedos para facilitar el habla o la escritura, respectivamente.

Los territorios de Wernicke y Broca están conectados de forma constante y bidireccional a través del fascículo arqueado, un enorme cordón de fibras nerviosas que en la inmensa mayoría de las personas es mucho más grueso en el hemisferio izquierdo, que se ocupa del lenguaje. Esta asimetría solo existe en la especie humana.

Actualmente, las técnicas de magnetoencefalografía nos permiten seguir el proceso de activación cerebral y con ellas se pueden realizar grabaciones a cámara lenta que reconstruyen la sucesión de regiones que recorren, por ejemplo, las palabras al leerlas (ver video; Marinkovic et al., 2003).

Tal como se observa en el video, la activación cerebral se inicia en el lóbulo occipital (en torno a los 100 ms), continúa en la “caja de letras del cerebro” (en torno a 170 ms) y luego se da una explosión de actividad en regiones temporales y frontales del hemisferio izquierdo que conforman los territorios de Wernicke y Broca. Finalmente, se observa un regreso de actividad a las zonas visuales. Todo ello demuestra que la rapidez con la que nuestro cerebro identifica el significado de las palabras es un proceso bidireccional en el que cooperan las áreas de visión del cerebro con las redes del lenguaje hablado. Relacionado con esto último, se han identificado dos rutas paralelas que utilizamos de forma simultánea que nos permiten acceder al significado de las palabras cuando hemos aprendido a leer y ya automatizamos el proceso. Por un lado, existe una ruta fonológica (dorsal) que permite identificar palabras poco frecuentes a través de la pronunciación y, por otro, una ruta léxica (ventral) que facilita identificar palabras conocidas accediendo directamente a su significado (ver figura 2).

Fases en el aprendizaje de la lectura

Aprender a leer conlleva un proceso de aprendizaje continuo que partirá del análisis de la letra y llegará a la interpretación del significado de frases y textos complejos. Los estudios con neuroimágenes han identificado grandes transformaciones en los sistemas neurales que posibilitan la lectura, especialmente en circuitos del área de la caja de letras del cerebro. En concreto, se distinguen tres etapas importantes (no separadas de forma estricta) en la adquisición de la lectura que comenzarían en torno a los 5 o 6 años. Antes, las niñas y los niños adquieren un gran conocimiento fonológico, consiguen un vocabulario de varios miles de palabras y dominan las reglas gramaticales básicas de sus lenguas. Las fases principales que describen la curva de aprendizaje son las siguientes (Dehaene, 2018):

1. Es la etapa de las imágenes, cuando el cerebro del niño fotografía palabras y se va adaptando visualmente a las letras del abecedario.

2. Es la etapa fonológica en la que el cerebro empieza a convertir las letras en sonidos. Una auténtica revolución cerebral ha de darse para que el niño note que, por ejemplo, el sonido ba está compuesto por los fonemas b y a. El descubrimiento de que el habla está compuesta por fonemas que pueden recombinarse para crear nuevas palabras (conciencia fonológica) es crítico. Los estudios han demostrado que el descubrimiento de los fonemas requiere la enseñanza explícita del código alfabético.

3. Es la etapa ortográfica, cuando el niño es capaz de reconocer palabras de forma rápida y precisa. A diferencia de la etapa fonológica en la que el tiempo de lectura aumenta con la cantidad de letras que tiene una palabra, debido a que los niños las descifran de forma secuencial, letra a letra, en esta etapa ese efecto de longitud va desapareciendo al hacerse la lectura más fluida. Con la práctica, nuestro cerebro seguirá prestando atención a las letras, aunque lo hará de forma distinta. Nuestro sistema visual procesará todas las letras simultáneamente y en paralelo, pero para ello se necesitará mucha práctica.

Habilidades implicadas en la lectura

Tal como hemos comentado, el buen aprendizaje de la lectura requiere muchos años de trabajo continuo que puede verse afectado, por ejemplo, por el tipo de lengua o por el entorno sociocultural en el que crecemos. Junto a esto, se han identificado una serie de habilidades específicas que son importantes en ese aprendizaje. Comentamos brevemente algunas de ellas:

Vocabulario

Los niños aprenden el significado de gran parte de las palabras de forma indirecta a través de experiencias cotidianas con el lenguaje oral y el escrito. Esto incluye conversaciones con otras personas, escuchar cuando se les lee o cuando leen por su cuenta. Y, por supuesto, también aprenden palabras del vocabulario de forma directa cuando se les enseña de forma explícita, lo cual es especialmente relevante en el caso de palabras poco frecuentes. Todo esto es muy importante en la etapa de infantil porque se ha demostrado que la exposición temprana al lenguaje de los niños impacta en sus habilidades lingüísticas, cognitivas y logros académicos posteriores, lo cual está muy vinculado al estatus socioeconómico familiar (Romeo et al., 2018; ver figura 4). La familia tiene que alimentar el apetito lingüístico de los bebés con un léxico rico y frases bien estructuradas porque el vocabulario que dominará la niña o el niño a los 3 o 4 años dependerá de la cantidad y calidad de discurso que le hayamos dirigido.  Disfrutar, por ejemplo, de la lectura compartida de cuentos tiene un impacto positivo en el cerebro de los pequeños activando más regiones críticas del lenguaje, como el territorio de Broca, que más tarde se fortalecerán y les permitirán leer y entender textos (Hutton et al., 2020). Qué importantes son los entornos enriquecidos en el aprendizaje en la infancia. Con paciencia, alegría y mesura. Más no es mejor.

Figura 4.  Los hijos (4-6 años) de familias con niveles educativos e ingresos mayores tienden a obtener mejores resultados en pruebas lingüísticas (Romeo et al., 2018).

Conciencia fonológica

La capacidad de diferenciar y de manipular los sonidos del lenguaje oral es esencial en el aprendizaje de la lectura. Tomar conciencia de que las palabras de la lengua hablada están compuestas por fonemas no es algo obvio, porque nada indica claramente su presencia en el discurso continuo. Ello requiere que el docente enseñe al niño a orientar su atención hacia el nivel acertado de organización del habla. Cuando prestamos atención a los sonidos, orientamos el procesamiento cerebral hacia las áreas cerebrales del lenguaje que se utilizan para la lectura. Ese parece que es el camino adecuado. Los estudios revelan que este entrenamiento fonológico en el que se dirige la atención a las correspondencias entre fonemas y grafemas es el más adecuado para el aprendizaje del niño, y favorece en él un desarrollo autónomo (Castles et al., 2018).

El desarrollo de la conciencia fonológica puede acelerarse con actividades tradicionalmente utilizadas en edades tempranas, tales como las canciones infantiles con juegos de rimas, la poesía, el canto y la música (en general, todo lo que suponga manipular los sonidos de las palabras prepara a los niños para la lectura). Ello se debe a que afectan selectivamente a la actividad oscilatoria de la banda theta (4-8 Hz) en la corteza auditiva. Esta frecuencia theta es aproximadamente la frecuencia en la que se producen las sílabas en todas las lenguas del mundo, es decir, la percepción silábica y la inteligibilidad del habla están relacionadas con el patrón de fase de la banda theta (Goswami, 2020).

Fluidez y comprensión

Una adecuada comprensión lectora requiere una buena capacidad de decodificación, pero también son básicas toda una serie de habilidades lingüísticas asociadas al vocabulario, el dominio gramatical, la comprensión auditiva o al uso de la memoria de trabajo verbal (Hjetland et al., 2019; ver figura 5).

Figura 5.  La decodificación es necesaria, pero no suficiente para la comprensión lectora (adaptación de Nation, 2019).

Leer con fluidez significa leer un texto con rapidez y precisión captando el significado completo del relato. Inicialmente, al lector principiante le cuesta su tiempo leer una palabra, el cual irá en proporción al número de letras de la misma. Durante esta etapa la actividad cerebral abarca un conjunto de regiones más amplio que en el caso del adulto, haciendo participar más a regiones que intervienen en la producción del habla o en procesos atencionales. Esta actividad irá decreciendo conforme la lectura se vaya automatizando. Automatizar la lectura es hacer más fluida la relación directa entre las letras y los sonidos del lenguaje pasando de un proceso necesario de interpretación en serie de los elementos constituyentes de la palabra (cada letra, sílaba y palabra requieren una atención focalizada) a un análisis inconsciente, en paralelo, que permite decodificar la palabra de una vez gracias al análisis simultáneo de sus elementos. Con la práctica, irá dependiendo cada vez menos de la cantidad de letras de la palabra.  De esta forma, el niño irá reconociendo con mayor facilidad las palabras más frecuentes desarrollando la ruta neural que le permite acceder al significado de la palabra a partir de sus letras sin que participe la pronunciación. Esto puede hacer creer que el cerebro utilizaba la forma global de la palabra, pero es una ilusión. Prestar atención a la forma global de las palabras impide descubrir el código alfabético y orienta los recursos del cerebro hacia un circuito inadecuado del hemisferio derecho. Para aprender a leer, solo el entrenamiento fónico, que concentra la atención en las correspondencias entre las letras y los sonidos, activa el circuito de la lectura del hemisferio izquierdo y permite el aprendizaje (Dehaene, 2019; Yoncheva et al., 2010; ver figura 6). Qué importante es la atención en la lectura y en el aprendizaje.

Figura 6. Se les enseñó a los participantes un alfabeto nuevo. Aquellos a los que se les explicó que las palabras están compuestas por letras que representan los fragmentos elementales de la lengua hablada, aprendieron rápidamente a leer, activando con normalidad el área VWFA del hemisferio izquierdo. Los que prestaron atención a la forma global de las palabras, tras muchos ensayos, no lograron percibir que las palabras están formadas por letras. Activaron un circuito del hemisferio derecho que les impidió generalizar el aprendizaje a palabras nuevas (Yoncheva et al., 2010).

En lo referente a la comprensión de un texto, es un proceso complejo que requiere enfrentarse a los diferentes significados de una palabra y escoger la que tenga sentido en su contexto particular.  También requiere una automonitorización continua que nos permita dotar de sentido al texto. Por cierto, un estudio reciente sugiere que leer bien conlleva leer más y no al revés (Van Bergen et al., 2018). Y otro en el que participaron niñas y niños de entre 8 y 12 años de edad, reveló una correlación positiva entre la conectividad en el circuito de la lectura del hemisferio izquierdo y el tiempo dedicado a la lectura de libros, pero una menor conectividad de esas regiones en proporción al tiempo acumulado tras la pantalla del móvil, ordenador, tablet, televisión, etc. (Horowitz-Kraus y Hutton, 2018).

Dificultades en el aprendizaje de la lectura

Aunque próximamente escribiremos un artículo específico sobre la dislexia (concluiremos la trilogía sobre lectura), vale la pena hacer algunos comentarios breves sobre el tema (ver Dehaene, 2018; Richland, 2020).

Algunos niños, por más que reciban una enseñanza adecuada y se esfuercen mucho, presentan dificultades para aprender a leer, mientras que pueden desenvolverse muy bien en otro tipo de tareas. En la mayoría de los casos, la dislexia está asociada a una dificultad en el procesamiento de los fonemas, pero no es la única causa. Las neuroimágenes revelan que el cerebro de los niños presenta una desorganización y una subactivación de las regiones del lóbulo temporal del hemisferio izquierdo del cerebro que sustentan la lectura. Y ya hemos visto que este circuito de la lectura es tan complejo que puede fallar en varias partes (ver figura 7). Todo ello tiene un componente genético. De hecho, se han identificado genes que controlan la migración neuronal hacia la corteza durante el embarazo, con lo que cualquier problema que afecte a ese proceso puede conllevar una desorganización de los circuitos corticales.

Los especialistas no hablan de dislexia hasta que se descartan problemas sensoriales (visuales o auditivos, básicamente), déficits de inteligencia global o una educación de calidad o cantidad inadecuada.

Más allá de las anomalías neuronales asociadas a la dislexia, prácticamente todas las niñas y niños pueden aprender a leer (cerebro único) gracias a los mayores mecanismos cerebrales compensatorios (cerebro plástico) que se dan en la infancia respecto a la adultez. De ahí la importancia de una pronta detección porque garantiza que puedan beneficiarse más de una intervención temprana que tenga en cuenta sus necesidades específicas. Porque como otros déficits de desarrollo, la dislexia puede presentar diferentes perfiles, es decir, cada caso es único con sus particularidades personales. En la práctica, casi siempre una enseñanza paciente e intensiva de las correspondencias entre grafemas y fonemas permite compensar gran parte del déficit.

Figura 7. En niños lectores sin dificultades se da la adecuada conectividad entre los sistemas ventral, dorsal y anterior, pero no en los niños disléxicos (Van der Mark et al., 2011).

Algunas ideas clave

Acabamos este artículo sintetizando algunas ideas extraídas de la lectura del libro que lo inspiró (Mora, 2020):

1.  Aprender a leer conlleva un largo proceso de análisis que va de la letra a la sílaba y de está a la palabra y su significado. A ello le sigue el aprendizaje de la estructura sintáctica de la frase y su nuevo significado.

2️. La actividad de tres regiones del cerebro constituye el sustrato principal de la lectura: área visual de formación de las palabras (construcción de palabras), zona de Wernicke (decodificación y semántica) y zona de Broca (construcción del lenguaje).

3. La lectura cambia físicamente el cerebro y modifica significativamente el lenguaje.

4️. Con el juego se produce la entrada lenta al mundo de los abstractos, las ideas y los conceptos que conducen de lleno al aprendizaje de la lectura.

5️. Aprender a leer bien requiere muchos años de trabajo, habiendo factores que inciden de forma notable, como el entorno familiar y cultural o el tipo de lengua.

6️. Las áreas responsables de la decodificación tienen tiempos diferentes de desarrollo y maduración que pueden variar en cada niño. Su mielinización se completa en torno a los 7 años en la inmensa mayoría.

7️. Los problemas de lectura que presenta un niño arrancan, en su mayoría, de un déficit fonológico.

8. No hay tanto “dislexia” como niños que padecen “su propia dislexia’, es decir, que cada caso es único y con peculiaridades personales.

9️. Leer requiere un foco atencional casi completo, con un tiempo determinado, que puede ser interferido cuando leemos en internet.

10. Iniciar la lectura debe ser un descubrimiento feliz para las niñas y niños.

Ya lo decía Umberto Eco: “quien no lee, con 70 años habrá vivido solo una vida: la suya. Quien lee habrá vivido 5000 años: estuvo cuando Caín mató a Abel, cuando Renzo se casó con Lucía, cuando Leopardi admiraba el infinito”. Y es que al cerebro le encantan las buenas historias.

Jesús C. Guillén


Referencias:

1. Banich, M., Compton, R. (2018). Cognitive Neuroscience (4th ed.). Cambridge: Cambridge University Press.

2. Castles, A. et al. (2018). Ending the reading wars: reading acquisition from novice to expert. Psychological Science in the Public Interest, 19 (1), 5-51.

3. Dehaene, S. (2018). El cerebro lector. Ultimas noticias de las neurociencias sobre la lectura, la enseñanza, el aprendizaje y la dislexia. Buenos Aires: Siglo XXI.

4. Dehaene, S. (2019). ¿Cómo aprendemos?: Los cuatro pilares con los que la educación puede potenciar los talentos de nuestro cerebro. Buenos Aires: Siglo XXI Editores.

5. Dehaene S. et al. (2015). Illiterate to literate: behavioral and cerebral changes induced by reading acquisition. Nature Review Neuroscience, 16(4), 234-244.

6. Dehaene-Lambertz, G. et al. (2018). The emergence of the visual word form: longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLoS Biology, 16 (3).

7. Goswami, U. (2020). Reading Acquisition and Developmental Dyslexia. Educational Neuroscience and Phonological Skills. En Thomas, M. et al. (Eds), Educational Neuroscience Development Across the Life Span, 144-168.

8. Hjetland, H. N. et al. (2019). Pathways to reading comprehension: a longitudinal study from 4 to 9 years of age. Journal of Educational Psychology, 111 (5), 751-763.

9. Horowitz-Kraus, T., Hutton, J.S. (2018). Brain connectivity in children is increased by the time they spend reading books and decreased by the length of exposure to screen-based media. Acta Paediatrica, 107, 685-693.

10. Hutton, J. S. et al. (2020). Associations between home literacy environment, brain white matter integrity and cognitive abilities in preschool-age children. Acta Paediatrica, 109(7), 1376-1386.

11. Marinkovic, K. et al. (2003). Spatiotemporal dynamics of modality-specific and supramodal word processing. Neuron, 38(3), 487-497.

12. Mora, F. (2020). Neuroeducación y lectura. De la emoción a la comprensión de las palabras. Madrid: Alianza Editorial.

13. Nation, K. (2019). Children’s reading difficulties, language, and reflections on the simple view of reading. Australian Journal of Learning Difficulties, 24(1), 47-73.

14. Richlan F. (2020). The functional neuroanatomy of developmental dyslexia across languages and writing systems. Frontiers in Psychology, 11 (155).

15. Romeo, R. R. et al. (2018). Beyond the 30-million-word gap: Children’s conversational exposure is associated with language-related brain function. Psychological Science, 29 (5), 700-710.

16. Rueckl, J. G. et al. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages, PNAS, 112 (50), 15.510-15.515.

17. Van Bergen, E. et al. (2018). Why do children read more? The influence of reading ability on voluntary reading practices. Journal of Child Psychology and Psychiatry, 59 (11), 1205-1214.

18. Van der Mark S. et al. (2011). The left occipitotemporal system in reading: disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. NeuroImage, 54. 2426-36.

Categorías:Neurodidáctica Etiquetas: , , ,

Los siete pilares de una buena salud cerebral (y también educativa)

Cada uno de nosotros tiene un cerebro distinto, y el reto es optimizar y potenciar de forma personalizada los mecanismos salutogénicos de nuestro cerebro.
Álvaro Pascual-Leone

Todos deseamos una vida feliz, evidentemente, pero para tenerla es importante estar sanos. Y para que eso se produzca es imprescindible mantener una buena salud cerebral, tal como explica el gran neurocientífico Álvaro Pascual-Leone en el libro El cerebro que cura, publicado recientemente. Basándose en investigaciones científicas realizadas en los últimos años, los autores identifican siete pilares para una buena salud cerebral, lo cual no significa tener un cerebro joven a cualquier edad sino “un cerebro con las conexiones adecuadas, con una capacidad de inhibición de señales irrelevantes bien compensada y con la cantidad justa de plasticidad”. A nivel cerebral, el equilibrio es esencial, es decir, tan perjudicial puede ser el exceso como el defecto.

Y como desde la perspectiva neuroeducativa asumimos un aprendizaje desde, en y para la vida, el reto que nos planteamos en el siguiente artículo en Escuela con Cerebro es trasladar esos pilares básicos que nos permiten optimizar el funcionamiento cerebral, a medida que vivimos y envejecemos, al terreno educativo.

1. Salud integral

Hace tiempo que sabemos que la salud corporal afecta al cerebro. Por ejemplo, un buen funcionamiento cerebral requiere que el corazón funcione de forma adecuada. Pero también los pulmones, el estómago, los intestinos, el hígado, el páncreas, …por lo que es necesario atender a nuestro estado médico general. Este enfoque integral, es el que parece funcionar mejor para optimizar el aprendizaje y las llamadas funciones ejecutivas del cerebro. Es decir, los programas que tienen en cuenta las necesidades globales del niño, cognitivas, emocionales, sociales y físicas, yendo más allá de lo académico, son los que parece que facilitan un mejor desarrollo y funcionamiento ejecutivo del cerebro (Diamond, 2010). Y ello requiere dar mayor importancia en el aprendizaje al juego, el arte, el movimiento o la educación emocional (ver video). Por ejemplo, cuando se integran actividades artísticas en contenidos académicos de ciencias se facilita la memoria a largo plazo (Hardiman et al., 2019). Estos proyectos transdisciplinares le encantan a nuestro cerebro holístico y multisensorial. Y no solo eso, sino que sabemos que jugar, hacer teatro, practicar deporte o meditar nos puede ayudar a aprender a gestionar el estrés, una parte importante de la salud cerebral.

En la educación

La participación en la orquesta, la obra de teatro, un deporte de equipo o un buen programa de educación emocional puede suministrar oportunidades cotidianas para trabajar muy bien las funciones ejecutivas del cerebro.

2. Nutrición

A pesar de que el cerebro representa, en promedio, el 2% del peso corporal, sus necesidades energéticas pueden llegar al 25% de la energía que gasta nuestro cuerpo. Pero no todas las calorías tienen la misma incidencia sobre nuestras capacidades cognitivas y estados anímicos. Y aunque nuestro cerebro es el resultado de lo que comemos, también es muy importante cuándo lo comemos.

Más allá de alimentos concretos, un cerebro sano requiere una dieta saludable que incluya frutas, verduras frescas, pescado, o grasas saludables provenientes del aceite de oliva o de las nueces, por ejemplo. Ello caracteriza a la dieta mediterránea, que se cree que está asociada a un mejor funcionamiento cognitivo y a un menor riesgo de padecer demencia (Valls-Pedret et al., 2015; ver figura 1). Y, en concreto, parece que el desayuno puede ser importante para un buen rendimiento cognitivo, especialmente en la adolescencia. Los estudiantes que desayunan de forma regular y se alejan de la comida basura rinden mejor en la escuela y disponen de la energía necesaria en las primeras horas de la jornada escolar mejorando así la atención y la memoria (Burrows et al., 2017).

En la educación

Es muy recomendable compartir y trabajar con los estudiantes estas cuestiones a través de buenos proyectos educativos. Y también parece necesario acercar esta información a las familias.

Figura 1. Las personas que siguieron una dieta mediterránea suplementada con aceite de oliva
o nueces obtuvieron mejoras en tareas cognitivas (Valls-Pedret et al., 2015)

3. Sueño

El sueño constituye un acto imprescindible para la buena salud cerebral, dado que actúa como una especie de regenerador neuronal, algo parecido a lo que ocurre cuando vamos al gimnasio y dañamos fibras musculares, que luego se recuperan y se fortalecen con el debido aporte nutricional. Al dormir se acelera la síntesis proteica, con el consiguiente fortalecimiento de las conexiones neuronales y, en determinadas regiones cerebrales, se repite la actividad realizada durante la vigilia que nos permite consolidar las memorias y con ello el aprendizaje.

Cada rango de edad tiene unas necesidades específicas de sueño. En una publicación reciente, la American Academy of Sleep Medicine recomienda lo siguiente (Paruthi et al., 2016):

Figura 2. Horas de sueño recomendadas en los diferentes rangos de edad (Paruthi et al., 2016)

Acortar la duración recomendada podría afectar a la salud física, cognitiva o emocional, perjudicando el rendimiento académico o laboral. Todo ello es especialmente relevante en la infancia o en la adolescencia. En este último caso, se ha visto que la melatonina (la hormona que modula los patrones de sueño) se libera de forma más tardía con lo que se retrasa el ritmo circadiano del adolescente que, como consecuencia de ello, tiene una tendencia a acostarse más tarde. El inicio de la jornada escolar a las 8 h no parece lo más adecuado para ellos. De hecho, existen varios estudios que lo corroboran. Por ejemplo, Kelley et al. (2017) analizaron el impacto de cambiar el inicio de la jornada escolar de las 8,50 h a las 10 h durante dos cursos completos y comprobaron una mejora de los resultados académicos de los adolescentes, en promedio, junto a una disminución de las faltas de asistencia. En el tercer curso volvieron al inicio de las 8,50 h y empeoraron los resultados (ver figura 3).

En la educación

Si no es posible cambiar el inicio de la jornada escolar, es adecuado retrasar las tareas de mayor demanda cognitiva, especialmente en la adolescencia, hasta avanzada la mañana.

Figura 3. Los resultados académicos de los adolescentes mejoraron los dos primeros cursos
cuando el inicio de la jornada escolar fue a las 10 h en lugar de las 8,50 h (Kelley et al., 2017)

4. Ejercicio físico

El ejercicio físico también constituye una poderosa herramienta que ayuda a proteger nuestro cerebro y mantenerlo sano.

Ya conocíamos los efectos beneficiosos de la actividad física para la salud física y emocional, cómo incidía de forma positiva sobre el sistema cardiovascular, el sistema inmunológico, el estado de ánimo o sobre el estrés, por ejemplo. Pero en los últimos años la neurociencia ha revelado que el ejercicio regular puede modificar el entorno químico y neuronal que favorece el aprendizaje. Y cuando hablamos de ejercicio físico nos referimos a un tipo de actividad física que requiere un esfuerzo y constituye un reto.

Desde la perspectiva educativa, no solo se ha comprobado la importancia de dedicar más tiempo a la educación física, sino también comenzar la jornada escolar con unos minutos de actividad física o juegos activos, realizar parones activos que parece que mejoran la concentración de los estudiantes en las tareas posteriores, o facilitar una mayor libertad de movimiento para realizar las actividades. Todo ello puede incidir positivamente en el desempeño académico del alumnado. De hecho, en estudios recientes se ha comprobado que existe una correlación positiva entre la capacidad cardiorrespiratoria de los estudiantes y el volumen de sustancia blanca que permite una mejor conexión entre regiones específicas del cerebro que intervienen directamente en el aprendizaje y en el rendimiento académico del alumnado (Esteban-Cornejo et al., 2019).

Como dice el neurocientífico John Ratey (ver video), en la práctica, salir a correr unos minutos puede producir los mismos efectos que una pequeña dosis de los fármacos Concerta o Prozac, pero provocando un mayor equilibrio entre neurotransmisores y, por supuesto, de forma más natural y saludable.

En la educación

Comenzar la jornada escolar de forma activa puede ayudar a optimizar los recursos atencionales durante las tareas posteriores. El aprendizaje requiere movimiento. Bueno para el corazón, bueno para el cerebro.

5. Entrenamiento cognitivo

El entrenamiento cognitivo constituye una especie de gimnasia para el cerebro que busca optimizar su salud. A nivel cerebral se aplica aquello de “úsalo o piérdelo” porque la práctica permite fortalecer las conexiones neuronales que nos permiten consolidar las memorias y aprender. Las actividades intelectuales que constituyen verdaderos retos promueven la neuroplasticidad y la neurogénesis en regiones críticas del cerebro, y amplían la llamada reserva cognitiva que permite reducir el desarrollo de ciertas enfermedades neurodegenerativas como el Alzheimer.

Los ingredientes clave de un buen menú cognitivo son la novedad, el reto y la variedad. Y es que al cerebro le encantan las sorpresas, los desafíos continuos adecuados a las necesidades personales y una variedad de actividades que permitan una estimulación completa, dada la diversidad funcional de nuestro cerebro. Todo ello se puede trabajar de forma fantástica integrando el componente lúdico, también a través de juegos de ordenador o videojuegos adecuados. Hasta el equipo de Richard Davidson, el gran impulsor de la neurociencia contemplativa, ha analizado los beneficios de un videojuego (Crystals of Kaydor) para entrenar la empatía de los adolescentes, que consiste en una misión espacial hacia el planeta Kaydor con el objetivo de identificar las emociones básicas de sus habitantes a través de las expresiones faciales y el lenguaje corporal, lo cual requiere cooperar y adoptar conductas prosociales (Kral et al., 2018; ver figura 4).

En la educación

Integrar lo lúdico en el aprendizaje constituye una estrategia motivadora potente. Los medios digitales son un recurso al servicio de los objetivos de aprendizaje que pueden ayudar a alcanzarlos. Al cerebro le encantan las buenas preguntas y las buenas historias.

Figura 4. Seis horas jugando a Crystals of Kaydor produjo en los adolescentes mejoras
en circuitos neuronales básicos para la regulación emocional (Kral et al., 2018)

6. Socialización

Nuestro cerebro es social. Desde el nacimiento, los seres humanos estamos programados para aprender a través de la imitación. Pero no solo eso, las personas con sólidos vínculos sociales que se sienten apoyadas afrontan mejor el declive cognitivo asociado al envejecimiento y muestran mejor estado de ánimo.

En un sugerente estudio, los investigadores asignaron de forma aleatoria a los jóvenes participantes a uno de los tres grupos siguientes en los que se realizaban diferentes tareas durante 10 minutos: en el primero se debatía un problema, en el segundo se realizaban de forma colectiva crucigramas o similares y en el tercero se veía un fragmento de una famosa serie de televisión. Después de esto, todos los participantes realizaron unas pruebas de memoria de trabajo y velocidad de procesamiento. Los resultados mostraron que los participantes de los grupos que requerían interacción y cooperación obtuvieron mejores resultados en las tareas que los otros (Ybarra et al., 2008). Estar en un grupo de forma pasiva (viendo la televisión, por ejemplo) es insuficiente, hay que participar de forma activa en las relaciones sociales.

Existe toda una red de regiones cerebrales interconectadas (el llamado cerebro social; ver figura 5) que facilitan la interacción social y que promueven un aprendizaje más eficiente, todo en consonancia con la naturaleza social del ser humano. En la práctica, se ha comprobado que cuando se pide a alguien que aprenda algo para que luego se lo enseñe a los demás en lugar de plasmar esos conocimientos en un examen tradicional, retiene más información (Lieberman, 2013).

En la educación

La cooperación requiere una enseñanza específica y continuada que está vinculada al aprendizaje socioemocional. Y entre las diferentes formas de cooperar, la tutoría entre iguales constituye una necesidad educativa.

Figura 5. Red de regiones que componen el cerebro social (Kandel, 2019)

7. Plan vital

Definir y perseguir nuestros propósitos en la vida es el último pilar de una buena salud cerebral. En el famoso estudio longitudinal Nun Study of Aging and Alzheimer’s Disease, se demostró que las monjas que ya siendo jóvenes eran más alegres y mostraban una actitud más entusiasta y positiva en su misión, vivián un promedio de diez años más que las que manifestaban actitudes menos positivas, e incrementaban su reserva cognitiva. Además, algunas de estas monjas desarrollaban la enfermedad de Alzheimer a nivel cerebral, pero no manifestaban síntomas de la misma (Snowdon, 2001). Junto a esto, la investigación indica que es muy importante que el propósito personal trascienda, es decir, que los planes vitales orientados a ayudar a otras personas tienen un impacto más beneficioso sobre la salud que los dirigidos a uno mismo.

El plan vital de las personas puede cambiar durante la vida, de la misma forma que lo hace nuestro cerebro plástico. Ahora bien, es imprescindible tenerlo y recorrerlo. Al igual que en el aprendizaje, el proceso, y no el resultado, debería ser lo más importante. 

En la educación

Una verdadera escuela con cerebro no olvida el corazón, fomenta una mentalidad de crecimiento y optimiza las fortalezas de todos sus estudiantes. Y se vincula a la vida cotidiana a través de buenos proyectos sociales como los ApS (Aprendizaje-Servicio).

Jesús C. Guillén


Referencias:

1. Burrows T. L. et al. (2017). Associations between dietary intake and academic achievement in college students: a systematic review. Healthcare 5, 60.

2. Diamond, A. (2010). The evidence base for improving school outcomes by addressing the whole child and by addressing skills and attitudes, not just content. Early Educ. Dev. 21, 780-793.

3. Esteban-Cornejo I. et al. (2019). Physical fitness, white matter volume and academic performance in children: Findings from the Active Brains and FIT Kids 2 Projects. Frontiers in Psychology 10 (208).

4. Hardiman, M. et al. (2019). The effects of arts-integrated instruction on memory for science content. Trends in Neuroscience and Education, 14.

5. Kandel E. (2019). La nueva biología de la mente: Qué nos dicen los trastornos cerebrales sobre nosotros mismos. Planeta.

6. Kelley P. et al. (2017). Is 8:30 a.m. still too early to start school? A 10:00 a.m. school start time improves health and performance of students aged 13–16. Frontiers in Human Neuroscience 11 (588).

7. Kral T. et al. (2018). Neural correlates of video game empathy training in adolescents: a randomized trial.  npj Science of Learning 3.

8. Lieberman, M. D. (2013). Social: why our brains are wired to connect. Oxford University Press.

9. Paruthi S. et al. (2016). Recommended amount of sleep for pediatric populations: a consensus statement of the American Academy of Sleep Medicine. J Clin Sleep Med 12(6), 785-786.

10. Pascual-Leone A. et al. (2019). El cerebro que cura. Plataforma Editorial.

11. Snowdon D. (2001). Aging With Grace: What the Nun Study teaches us about leading longer, healthier, and more meaningful lives. Bantam Books.

12. Valls-Pedret C. et al. (2015). Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern. Med. 175, 1094-1103.

13. Ybarra O. et al. (2008). Mental exercising through simple socializing: social interaction promotes general cognitive functioning. Pers Soc Psychol Bull 34, 248-259.

El cerebro matemático en el aula: algunas ideas clave

Es bastante extraño ver que a muchos niños les desagrada las matemáticas, pero si observamos a los más pequeños son muy intuitivos. Hemos visto circuitos en el cerebro que se ocupan de los números, del espacio o la geometría que están presentes en la infancia temprana. Creo que el error en la escuela es enseñarle a los niños que la matemática es muy abstracta, muy complicada. Si basáramos las matemáticas en intuiciones, que ya están presentes en el cerebro del niño, podríamos ayudarles a que las disfruten.

                                                        Stanislas Dehaene

¿Quieres conocer el número del calzado de la persona que tienes al lado y qué edad tiene? Puedes saberlo sin preguntárselo. Dile que escriba en una hoja, sin enseñártela, el número de calzado que utiliza. Que lo multiplique por 2 y que sume 5 al resultado obtenido. Que multiplique esta suma por 50 y que le sume al producto encontrado 1768. Finalmente, que reste a ese número su año de nacimiento. Así habrá obtenido un número de cuatro cifras. Las dos primeras corresponden al número de su calzado y las dos siguientes a los años que cumplirá el 2018.
Cuestiones numéricas como estas causan asombro en estudiantes de todas las etapas educativas (te animamos a descubrir el truco, lo cual puede amplificar el asombro y ser muy productivo) y es que así somos los seres humanos, curiosos por naturaleza, Y no solo eso, sino que nacemos también con ciertas predisposiciones genéticas hacia el aprendizaje, algo especialmente relevante cuando nos adentramos en la educación matemática. Sin embargo, hemos llegado a escuchar a niños de menos de diez años comentarios del tipo: «A mí siempre se me han dado mal las matemáticas», «nunca podré aprobarlas, porque no he nacido para eso» o «hay que ser muy inteligente para entenderlas». ¿Cómo es posible odiar las matemáticas con menos de 10 años? Lo cierto es que esto ocurre y que las dificultades en matemáticas son muy frecuentes en el aula y provocan estrés y ansiedad en muchos estudiantes. Investigaciones recientes en neurociencia centradas en el aprendizaje de las habilidades numéricas (importantes para el aprendizaje matemático inicial) pueden ayudar a mejorar esta situación. Aunque asumimos, por supuesto, que no existen recetas milagrosas ni soluciones educativas únicas.

Intuición numérica en la cuna
Aunque resulta sorprendente, los bebés son capaces de detectar cambios sutiles en las cantidades numéricas mejor que en otros parámetros físicos como, por ejemplo, el tamaño de los objetos. Recién nacidos pueden llegar a distinguir un conjunto de 4 puntos –vinculados a estímulos sonoros– respecto a uno de 12 (proporción 1:3); con 6 meses diferencian un conjunto de 8 puntos respecto a uno de 16 (proporción 1:2; ver video); y con 9 meses distinguen uno de 8 respecto a uno de 12 (proporción 2:3), es decir, muestran un sentido numérico que se va perfeccionando con la edad (Szkudlarek y Brannon, 2017).

Y no solo eso. El bebé nace con mecanismos innatos que le permiten discriminar entre dos o tres objetos sin necesidad de contar y entender operaciones aritméticas elementales en las que intervienen los primeros números naturales. Por ejemplo, en un experimento que se ha replicado varias veces, se mostró a bebés de cinco meses un juguete en un escenario y, a continuación, se subió una pantalla para que lo ocultara. Ante la mirada del bebé, se colocó un segundo juguete detrás de la pantalla y, posteriormente, se descubrió de nuevo. En algunas ocasiones aparecían dos juguetes, lo cual coincide con el resultado lógico (1 + 1 = 2), mientras que en otros casos se mostraba solamente uno, lo que corresponde a un resultado imposible (1 + 1 = 1). En psicología del desarrollo ya se sabía que los bebés pasan más tiempo analizando una situación inesperada o irreal que frente a escenas normales. Y así fue: los bebés dedicaron mucho más tiempo a observar la situación en la que aparecía solo un juguete, que era la que se asociaba al resultado imposible. Y algo parecido ocurre cuando se les muestra a bebés de 9 meses animaciones en las que se observan operaciones del tipo 5 + 5 = 10, frente a 5 + 5 = 5, o 10 – 5 = 5, frente a 10 – 5 = 10 (McCrink y Wynn, 2004; ver figura 1).
Este tipo de experimentos demuestra que nacemos con un sentido numérico rudimentario, que también está presente en otros animales –fundamental en su proceso adaptativo al entorno–, cosa que sugiere que es independiente del lenguaje y que lleva tras de sí una larga historia evolutiva.

Figura 1

Piaget se equivocó¹
Piaget, cuya influencia en la educación y en el desarrollo curricular ha sido incuestionable durante muchos años, sostenía que la adquisición del concepto de número ha de ir precedido de un proceso de reconstrucción cognitiva continuo, alejado de cualquier idea preconcebida sobre la aritmética. Pero las investigaciones neurocientíficas de los últimos años han revelado que cuando el bebé nace su cerebro no es una página en blanco y que los niños en la etapa de Educación Infantil muestran un sentido numérico que les faculta para adentrarse en el terreno de la aritmética sin que se les haya enseñado el lenguaje simbólico asociado a ella.
El sentido numérico que permite a los bebés identificar pequeñas cantidades sin necesidad de contar también les permite comparar cantidades mayores (ver figura 2), un proceso que se irá puliendo progresivamente a lo largo de la infancia. Se cree que la integración de estas dos formas diferentes de representación numérica, una para números pequeños –hasta el tres– y otra intuitiva para números grandes –que nos informa de que cualquier conjunto tiene asociado un número cardinal–, es fundamental para que el niño, en torno a los tres o cuatro años de edad, vaya comprendiendo el concepto de número natural², esencial para el aprendizaje de la aritmética (Dehaene, 2016). Como paso previo a la adquisición de conceptos matemáticos más complejos, el niño infiere que un conjunto posee un número de elementos concreto, por ejemplo 8, y que este número aporta una información diferente de 7 o 9.

Figura 2

Niños de cinco y seis años que no saben sumar se desenvuelven muy bien en operaciones del tipo: «María tiene 21 golosinas y consigue 30 más. Juan tiene 34. ¿Quién tiene más?», referidas a la suma, o «María tiene 64 golosinas y regala 13. Juan tiene 34. ¿Quién tiene más?», referidas a la resta (Gilmore et al, 2007). Esto prueba que son capaces de convertir el planteamiento verbal del problema en cantidades y de pensar en ellas sin que les haga falta realizar cálculos exactos, esto es, poseen una comprensión de la aritmética simbólica basada en una intuición temprana de las magnitudes.

El cerebro matemático
Los estudios con neuroimágenes han confirmado que el pensamiento matemático activa circuitos cerebrales independientes de los que intervienen en el procesamiento del lenguaje (ver figura 3). En concreto, existe una franja específica de la corteza cerebral que se encuentra en los dos hemisferios del lóbulo parietal, el surco intraparietal, que se activa ante cualquier tipo de presentación numérica, sea un conjunto de puntos, un símbolo o una palabra que hace referencia a un número (Amalric y Dehaene, 2016).

Figura 3

Pues bien, durante su desarrollo, el niño aprende a relacionar la representación no simbólica («∎∎∎») asociada a la aproximación, que es independiente del lenguaje, con el sistema de representación simbólico que se le enseña para caracterizar a los números, bien mediante los números arábigos (3, 4…), bien mediante las palabras (tres, cuatro…). Existen evidencias empíricas que demuestran que estos dos sistemas de representación diferentes, uno innato y el otro adquirido, están muy relacionados: los niños que se desenvuelven mejor en tareas no simbólicas del tipo estimaciones o aproximaciones, lo hacen también mejor en las tareas que requieren del lenguaje simbólico, como ocurre con las operaciones aritméticas, y ello predice un mejor rendimiento en la asignatura de matemáticas años después (Wang et al., 2016). No es casualidad que los programas informáticos utilizados con éxito para el tratamiento de la discalculia –dificultad asociada al procesamiento numérico–, como Number Race (ver figura 4) o Rescue Calcularis se basen en el diseño de tareas que integran las competencias numéricas asociadas al conteo con aquellas intuitivas que permiten comparar cantidades (Guillén, 2017). De esta forma se mejora la activación del surco intraparietal –también su conexión con la corteza prefrontal–, que sería para los números el equivalente del área visual de formación de palabras para las letras (para ampliar información leer El cerebro lector: algunas ideas clave).

Figura 4

Y más allá de las correlaciones, existen algunos experimentos, tanto en adultos (Park y Brannon, 2014), como en niños de 6 y 7 años (Hyde et al., 2014), y en niños de entre 3 y 5 años (Park et al., 2016), que sugieren una relación causal entre el entrenamiento centrado en los cálculos aproximados de cantidades (ver figura 5; izda) y el desempeño en los cálculos exactos característicos de las operaciones aritméticas básicas. Una menor incidencia tiene, por ejemplo, el entrenamiento centrado exclusivamente en la comparación de cantidades aproximadas, tareas que trabajan la memoria de trabajo visuoespacial –en las que se han de recordar secuencias de posiciones en una pantalla– o actividades de ordenación de símbolos numéricos (ver figura 5; dcha).

Figura 5

Y si el sistema numérico aproximado influye en el rendimiento académico del alumnado en las matemáticas, también parece hacerlo el conocimiento numérico simbólico, como es el caso de las tareas aritméticas que incluyen los conceptos de cardinal –«¿Cuántos lápices hay sobre la mesa?» – o de ordinal –«Señala el tercer lápiz»–. Introducir actividades informales en la infancia temprana que incluyan los símbolos numéricos, como sucede en multitud de juegos de mesa, constituye una estrategia educativa muy útil que también se puede favorecer en el entorno familiar (Merkley y Ansari, 2016; ver figura 6). En pocas palabras, parece existir una relación bidireccional entre los símbolos y las cantidades. Y esto parece corroborarlo un estudio muy reciente en el que han participado 1540 niños indios en la etapa preescolar (edad promedio 5 años). El entrenamiento de conceptos matemáticos no simbólicos (comparaciones y estimaciones) mejoró habilidades numéricas y espaciales de los niños pero los autores sugieren que, si se quiere incidir más sobre el aprendizaje formal inicial de las matemáticas, estos juegos deben conectar directamente las comparaciones o estimaciones de cantidades con las palabras y símbolos asociados a los números y que serán especialmente beneficiosos cuando se utilicen durante la enseñanza formal de las matemáticas (Dillon et al., 2017).

Figura 6

De la teoría a la práctica
No sabemos cuántos niños de los muchos que manifiestan dificultades en el aprendizaje de la aritmética padecen alteraciones cerebrales identificables. Seguramente, en muchos casos no existe ninguna alteración y el problema reside en que no han recibido la enseñanza adecuada. De hecho, algunos niños, como aquellos que han crecido en entornos socioeconómicos desfavorecidos, muestran déficits en el cálculo aun teniendo un sentido numérico normal, es decir, no pueden acceder a él a través de los símbolos numéricos debido a la peor educación que han recibido (Dehaene, 2016). La pregunta que nos planteamos es: ¿qué puede hacer la escuela al respecto? Analicemos algunas cuestiones que creemos que pueden ser relevantes porque facilitan el desarrollo del sentido numérico del niño.

Fomentando la intuición numérica
Hemos visto que operaciones como sumas y restas simples, estimaciones numéricas, comparaciones o el conteo emergen de forma espontánea en los niños, razón por la cual tendría que aprovecharse esta capacidad numérica intuitiva que forma parte de nuestra estructura cerebral, en lugar de introducir las matemáticas como una disciplina abstracta. Lo importante no es enseñar recetas aritméticas –en su mayor parte, repetitivas y descontextualizadas–, sino ir asociando el cálculo a su significado explícito. En definitiva, aprovechar el bagaje informal de que disponen los niños. Por ejemplo, podemos utilizar tarjetas con círculos o agujeros dispuestos de forma ordenada o aleatoria (ver figura 7) y preguntarles a los niños, sin necesidad de contar, por ejemplo, cuántos puntos hay en una tarjeta, que elijan tarjetas que tienen el mismo número de puntos o que comparen el número de dos de ellas. Incluso se pueden disponer los puntos formando figuras para que los niños vayan visualizando la relación entre los números y las formas geométricas.

Figura 7

De lo concreto a lo abstracto (y no al revés)
Cualquier actividad se puede utilizar para que los niños vayan desarrollando el razonamiento matemático y la comprensión numérica si les vamos haciendo preguntas sobre lo que están haciendo. Así, por ejemplo, con una colección de lápices se les puede preguntar cuántos hay, cuántos hay de cada color, cuál es el más largo y cuál es el más corto o si de un color hay más lápices que de otro.
Es muy importante que los niños vayan asociando los números con objetos concretos de la vida real. Así, por ejemplo, una bicicleta tiene dos ruedas, un triciclo tres y un coche cuatro o una persona tiene dos piernas y el perro cuatro patas. Y así podemos animar al niño para que encuentre o describa otras cosas con un número determinado de partes, como los tres colores de un semáforo.
Otra forma útil de acercar el conocimiento matemático al mundo real es la de realizar actividades en las que el niño ordena y clasifica elementos. Por ejemplo, podemos mostrarle diferentes tipos de manzanas y pedirle que elija las rojas o que coloque en un recipiente las rojas y en otro las verdes o, si todas son del mismo color, que coloque en un recipiente las más grandes y en otro las más pequeñas.

¡A jugar!
Hay muchas actividades que pueden utilizarse para mejorar el conteo. Por ejemplo, para reforzar el principio cardinal mediante el cual el niño entiende que el último número contado es el que indica el número de elementos del conjunto, se pueden utilizar fichas con caras de diferentes colores. Y se le puede preguntar al niño cuantas hay de un color determinado.
El juego es un mecanismo natural imprescindible para el aprendizaje y es especialmente importante en matemáticas, tal como comentábamos anteriormente. Podemos jugar a que el niño adivine un número y lo vamos guiando con un “más” o “menos”, o utilizar juegos de Lego o similares para pedirle que añada piezas del conjunto pequeño al más grande hasta que tengan el mismo número o al revés, o ábacos o juegos de mesa para entrenar el sistema de representación numérico y su relación espacial, o utilizar programas informáticos como Number Worlds o Number Race.
Relacionado con esto, se ha comprobado también la importancia del factor familiar. Leer cuentos con contenido matemático explícito que invita a reflexionar a los niños –como en el caso de la aplicación Bedtime Math– mejora su rendimiento académico en la etapa de primaria (Berkowitz et al., 2015). Y es que recursos como los lúdicos o artísticos son verdaderamente efectivos cuando inciden de forma explícita en los contenidos matemáticos, tal como ocurre cuando se adoptan programas curriculares basados en juegos interactivos que utilizan una gran variedad de materiales pedagógicos (Clements y Sarama, 2011; ver figura 8).

Figura 8

No existen dogmas
Muchas veces, por ejemplo, se considera inadecuado que el niño cuente con los dedos. Sin embargo, sabemos que contar con los dedos es un precursor importante para aprender la base 10, que el entrenamiento con los dedos mejora las habilidades matemáticas y que aquellos que mejor saben manejarlos obtendrán después mejores resultados en cálculos numéricos (Gracia-Bafalluy y Noël, 2008).
Del mismo modo, se suele considerar un error que el niño resuelva una operación aritmética básica del tipo 5 + 6 = 11 de forma indirecta y no de memoria –pensando, por ejemplo, que 5 + 5 es 10 y que 6 es una unidad más que 5–. Todo ello coarta la creatividad del alumnado y va convirtiendo las matemáticas iniciales en un cálculo exclusivamente mecánico. Esa es la razón por la que un niño de seis años puede responder de forma inmediata, sin realizar ningún cálculo, que 7 es el resultado de la operación 7 + 4 – 4, mientras que uno de nueve años, con mucha mayor experiencia, tiende a realizar el cálculo completo (7 + 4 = 11 y 11 – 4 = 7) porque le parece que es lo adecuado. Y despreciar las habilidades tempranas de los niños puede perjudicar su opinión posterior alrededor de las matemáticas –cosa que no suele ocurrir al principio de la Educación Primaria– y hacer que se desencadenen reacciones emocionales negativas asociadas a la ansiedad y el estrés, las cuales ocasionan muchos estereotipos y percepciones erróneas en los alumnos sobre su propia capacidad, que a menudo se mantendrán a lo largo de la vida. Por cierto, se ha comprobado que los adolescentes que muestran ansiedad ante las matemáticas obtienen mejores resultados en los exámenes si escriben sobre sus sentimientos y preocupaciones durante diez minutos antes de realizar las pruebas (Ramírez y Beilock, 2011; ver figura 9).

Figura 9.png

Matemáticas reales
En la práctica, la mejor forma para prevenir y combatir las opiniones negativas de los alumnos sobre las matemáticas es vincular su aprendizaje a situaciones concretas de la vida real, y no a conceptos abstractos. Por ejemplo, consideremos la resta 7 – 3 = 4. Los adultos podemos asimilar esa situación a una gran variedad de casos prácticos: si en un recorrido de 7 km hemos caminado 3 km, nos faltarán otros 4 km; si una temperatura inicial de 7 ºC desciende 3 ºC, la temperatura final será de 4 ºC, etc. El día que se introducen los números negativos y el profesor escribe 3 – 7 = –4, el niño puede tener dificultades para entender el significado del cálculo. En este caso, la temperatura le puede aportar una imagen intuitiva más eficaz que la distancia –concebir –4 ºC facilita el aprendizaje del concepto, al lado de –4 km– La mayoría de los niños están encantados de aprender matemáticas cuando se vincula su conocimiento a situaciones cotidianas y se resaltan sus aspectos divertidos. Y todo ello, antes del aprendizaje de los conceptos abstractos, que se irán adquiriendo de forma paulatina. Sin olvidar la relevancia del profesorado en este proceso. En un interesante estudio, se comprobó que el aprendizaje durante el curso escolar de niños de cuatro años mejoró ostensiblemente cuando el docente hablaba continuamente sobre cuestiones numéricas (Klibanoff et al., 2006).

Mentalidad de crecimiento en el aula
Sabemos que las creencias propias del alumno sobre su capacidad, muchas veces condicionadas por experiencias personales negativas, influyen de forma determinante en su aprendizaje. El proceso se amplifica en el caso concreto de las matemáticas debido a la creencia generalizada de que se requiere un talento específico para su dominio. Pero como ocurre en cualquier otra disciplina, no existen determinismos genéticos. De hecho, se han aplicado ya ciertas técnicas de estimulación eléctrica transcraneal no invasivas que mejoran el desempeño aritmético de niños con dificultades de aprendizaje (Looi et al., 2017). Cuánto daño han hecho –y siguen haciendo– las famosas etiquetas o estereotipos que chocan con lo que sabemos hoy día sobre nuestro cerebro plástico en continua transformación y que dañan gravemente las creencias del alumno sobre su propia capacidad. Sin olvidar que hay evidencias empíricas muy recientes que demuestran que no existen diferencias de género en la adquisición de las competencias matemáticas (Hutchison et al., 2018).
Los números poseen un significado para nosotros, como lo tienen las palabras, y en los dos casos aprovechamos nuestras capacidades innatas para ir desarrollando esta comprensión. Nacer con este sentido numérico innato no nos convierte per se en excelentes matemáticos, pero sí que facilita el proceso de comprensión de las matemáticas. Y, por supuesto, a pesar de lo que en su día dijera Piaget, no hay ninguna necesidad de esperar hasta los siete años para que el niño reciba sus primeras enseñanzas sobre aritmética.
Jesús C. Guillén


¹ Una revisión más exhaustiva sobre los planteamientos erróneos de Piaget vinculados al aprendizaje de la aritmética la puedes encontrar en la referencia Guillén, 2015.

² El concepto de número natural se va desarrollando lentamente y es anterior al conteo. Niños de 3 años son capaces de diferenciar, por ejemplo, cinco objetos de seis, utilizando la correspondencia uno a uno. Pero no captan la lógica básica del número natural (+1,-1, es decir, añado un objeto o quito uno). Con 4 años, aproximadamente, van captando la esencia de los números naturales a la vez que van entendiendo el significado de las palabras asociadas a los números y el procedimiento utilizado para el conteo (Izard et al., 2014)

Referencias:
1. Amalric M., Dehaene S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. PNAS 113(18), 4909-4917.
2. Ansari D. (2016). The neural roots of mathematical expertise. PNAS 113(18), 4887-4889.
3. Berkowitz T. et al. (2015). Math at home adds up to achievement in school. Science 350 (6257), 196-198.
4. Clements D., Sarama J. (2011). Early childhood mathematics intervention. Science 333, 968-970.
5. Dehaene S. (2016). El cerebro matemático: Como nacen, viven y a veces mueren los números en nuestra mente. Buenos Aires: Siglo Veintiuno.
6. Dillon M. R. et al. (2017). Cognitive science in the field: A preschool intervention durably enhances intuitive but not formal mathematics. Science 357 (6346), 47-55.
7. Gilmore C., McCarthy S. E., Spelke E. S. (2007). Symbolic arithmetic knowledge without instruction. Nature 447, 589-591.
8. Gracia-Bafalluy M., Noël M. P. (2008). Does finger training increase young children’s numerical performance? Cortex 44 (4), 368-375.
9. Guillén J. C. (2015). Y ¿si Piaget se equivocara con las matemáticas? En Neuromitos en educación: el aprendizaje desde la neurociencia, 73-93. Barcelona: Plataforma Actual.
10. Guillén J. C. (2017). Neuroeducación en el aula: de la teoría a la práctica. UK: CreateSpace.
11. Hyde D. et al. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition 131, 92-107.
12. Hutchison J., Lyons I., Ansari D. (2018). More similar than different: Gender differences in basic numeracy are the exception, not the rule. Child Development.
13. Izard V., Streri A., Spelke E. (2014). Toward exact number: Young children use one-to-one correspondence to measure set identity but not numerical equality. Cognitive Psychology 72, 27-53.
14. Klibanoff R. S. et al. (2006). Preschool children’s mathematical knowledge: The effect of teacher ‘math talk’. Developmental Psychology 42, 59-69.
15. Looi C. Y. et al. (2017). Transcranial random noise stimulation and cognitive training to improve learning and cognition of the atypically developing brain: A pilot study. Scientific Reports 7(1), 4633.
16. McCrink K., Wynn K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science 15, 776-781.
17. Merkley R., Ansari D. (2016). Why numerical symbols count in the development of mathematical skills: evidence from brain and behavior. Current Opinion in Behavioral Sciences 10, 14-20.
18. Park J., Brannon E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition 133(1), 188-200.
19. Park J. et al. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology 152, 278-293.
20. Ramírez G., y Beilock S. L. (2011). Writing about testing worries boosts exam performance in the classroom. Science 331, 211-213.
21. Szkudlarek E., Brannon E. M. (2017). Does the approximate number system serve as a foundation for symbolic mathematics? Language Learning and Development 13(2), 171-190.
22. Wang J. J. et al. (2016). Changing the precision of preschoolers’ approximate number system representations changes their symbolic math performance. Journal of Experimental Child Psychology 147, 82-99.

Cerebros hiperactivos en el aula: algunas estrategias neuroeducativas

El TDAH es mucho más que un problema de atención, hiperactividad o impulsividad. Es un trastorno del sistema ejecutivo del cerebro, un sistema que es esencial para el buen funcionamiento en la escuela y en la mayor parte de situaciones cotidianas.

Russell Barkley

Cuando preguntamos a padres de niños con TDAH (trastorno por déficit de atención con o sin hiperactividad), o a docentes con alumnos a los que se les ha diagnosticado este trastorno, suelen utilizar frases como las siguientes para describir el comportamiento de los hijos o estudiantes: “Se mueve continuamente, se distrae con facilidad, no para de hablar, es desordenado, nunca acaba las tareas, olvida lo que tiene que hacer, obtiene malos resultados académicos, etc.” Curiosamente, estos mismos niños o adolescentes son capaces de estar concentrados durante periodos de tiempo prolongados jugando a su videojuego favorito y pueden desenvolverse de forma extraordinaria en tareas extraescolares muy alejadas de situaciones académicas de estrés continuo a las que están expuestos con frecuencia. Porque las dificultades cognitivas que persisten en el tiempo, las críticas o la sensación de que no resuelven las cosas como se espera pueden provocar, por ejemplo, ansiedad o un autoconcepto negativo. Y ello puede interferir en las interacciones sociales. ¿Podemos hacer los adultos algo al respecto? Asumiendo una mentalidad de crecimiento real, seguro que sí. Y mucho, tanto en casa como en la escuela, que es donde nos centraremos específicamente.

El cerebro en el TDAH

Sabemos que el TDAH se manifiesta con síntomas de inatención, hiperactividad o una combinación de ambos –tiene una gran comorbilidad con otros trastornos o déficits de aprendizaje–, es congénito y persiste en la edad adulta en el 65% de los casos (Hart et al., 2013).

No existe un biomarcador que permita detectarlo sino que el diagnóstico –si es completo será complejo– lo realiza el médico a partir de entrevistas, cuestionarios, escalas de evaluación o exploraciones físicas que le permitan descartar otras razones, y para su tratamiento se utilizan medicamentos psicoestimulantes (el famoso Concerta) junto a terapias cognitivo-conductuales. Estos medicamentos tienen una estructura química similar a la anfetamina y actúan sobre los neurotransmisores de la corteza prefrontal inhibiendo su recaptación, con lo que llegan a reducirse los síntomas del trastorno en el 70 % de los casos, aunque sus procesos de acción no son del todo conocidos (Rubia et al, 2014), al igual que sus efectos sobre la salud a más largo plazo.

En los últimos años, los estudios con neuroimágenes han identificado algunas de las particularidades que caracterizan a los cerebros de los niños y adolescentes con TDAH. Una investigación reciente (Hoogman et al., 2017) en la que han participado 1713 personas con TDAH y una media de edad de 14 años, frente a 1529 integrantes del grupo de control, ha revelado que el tamaño del cerebro de las personas con TDAH es menor, en concreto en regiones subcorticales (ver figura 1) como el núcleo accumbens (recompensa), la amígdala (procesamiento emocional) o el hipocampo (memoria). Esto no significa que los niños con TDAH sean menos inteligentes sino que los problemas que manifiestan están asociados a una estructura cerebral diferente.

Estudios anteriores habían identificado en personas con TDAH alteraciones en los circuitos que conectan la corteza prefrontal –sede de las funciones ejecutivas– con áreas emocionales y motoras, como los ganglios basales y el cerebelo, lo que justificaría la mayor dificultad que muestran los estudiantes con TDAH para inhibir los impulsos (Hart et al., 2013; ver figura 2).

También se han identificado niveles más bajos de dopamina en algunas regiones del sistema de recompensa cerebral, como en el núcleo accumbens (Volkow et al, 2011), lo cual explicaría la mayor necesidad de estimulación que tienen los niños con TDAH. Y junto a los estudios de neuroimagen, la evaluación neuropsicológica ha identificado un perfil muy heterogéneo de alteraciones cognitivas asociadas a la memoria de trabajo, el control inhibitorio, la planificación o la detección y corrección de errores, entre otras muchas. Sin olvidar los déficits motivacionales observados en estos niños que les dificulta aplazar la recompensa pero que no les impide ejecutar mejor tareas que les interesan. Y son la baja tolerancia a la demora, junto a las dificultades en el control inhibitorio, dos de los primeros signos que predicen el trastorno. Lo cual es muy importante porque la detección temprana del TDAH en las primeras etapas educativas es necesaria para intervenir y disminuir su prevalencia en etapas posteriores (Rueda et al., 2016a).

Existen pues evidencias sólidas que muestran que el TDAH es una alteración del desarrollo de origen biológico y que las conductas observadas son el resultado de estas anomalías. Aunque un entorno familiar desorganizado o un currículo escolar inadecuado pueden amplificar esas conductas.

En la práctica

La pregunta que nos planteamos los educadores es cómo podemos optimizar el potencial de los niños y adolescentes con TDAH para que disfruten y aprovechen realmente el proceso de aprendizaje. Pues bien, existen algunas estrategias que están en consonancia con los planteamientos que proponemos desde la neuroeducación y que también nos pueden ayudar a mejorar la atención y el funcionamiento ejecutivo de todo el alumnado. Pero antes, escuchemos a Michael Posner, un referente mundial en el estudio de la atención:

Bueno para el corazón, bueno para el cerebro

A los niños y a los adolescentes –también a los adultos– les cuesta focalizar la atención en las tareas durante periodos de tiempo prolongados, un hecho que se amplifica en aquellos estudiantes con TDAH. En general, el ejercicio puede ser un buen antídoto para mejorar la concentración durante las tareas. Por ejemplo, con parones durante las clases para realizar unos movimientos de cierta intensidad (Ma et al., 2015) o iniciando la jornada escolar dedicando unos minutos -15 o 20- a una actividad aeróbica moderada (Stylianou et al., 2016). Y se ha comprobado que los niños con TDAH –a diferencia del resto– resuelven mejor pruebas cognitivas en las que interviene la memoria de trabajo cuando se les permite moverse (Sarver et al., 2015; ver figura 3).

En consonancia con este enfoque activo del aprendizaje que está muy alejado de la enorme cantidad de horas que pasan los estudiantes sentados en una situación pasiva, los estudios parecen sugerir la necesidad de cambiar con frecuencia los entornos de aprendizaje. Y nada mejor para los estudiantes con TDAH que puedan moverse o jugar en plena naturaleza. Un simple paseo por un entorno natural de unos 20 minutos puede combatir la fatiga mental que les provoca la atención focalizada (Taylor y Kuo, 2009). Qué importante para el cerebro y el aprendizaje es abrir las puertas del aula y la escuela a la realidad cotidiana y a la naturaleza (ver figura 4).

La actividad física y el deporte –especialmente los colectivos, en los que hay que tomar decisiones continuas en un contexto social– constituyen un buen entrenamiento de las funciones ejecutivas. Pero en el caso de los estudiantes con TDAH, todavía puede ser mejor cuando se combina con una mayor actividad mental, como en el caso de las artes marciales. Este tipo de deportes constituyen un reto, tanto para el cerebro como para el cuerpo, porque en ellos confluyen movimientos específicos que requieren una buena concentración para su aprendizaje. Por ejemplo, un programa de taekwondo de 3 meses de duración aplicado en la etapa de primaria provocó progresos en la autorregulación de los niños que posibilitaron mejoras, tanto conductuales como académicas (Lakes y Hoyt, 2004).

Respiro y siento

La práctica regular del mindfulness fortalece circuitos cerebrales que intervienen en los procesos atencionales. De ello se puede beneficiar cualquier estudiante, especialmente aquellos con TDAH. Un programa de mindfulness de 8 semanas de duración en el que intervinieron niños con edades entre los 8 y los 12 años, junto a sus padres, produjo mejoras significativas en el entorno familiar, especialmente en los síntomas relacionados con la falta de atención –de forma moderada en los síntomas asociados a la hiperactividad (Van der Oord et al., 2012).

Técnicas como el mindfulness ayudarán al estudiante a mejorar su concentración y a combatir el estrés, por ejemplo. Pero su mayor utilidad se da cuando se integran estas estrategias en los programas de educación emocional. Y con ellos, a los niños y a los adolescentes se les enseñan estrategias que facilitan la mejora de su diálogo interno, la resolución de problemas o la organización de las tareas, por ejemplo. Cuando van aprendiendo competencias interpersonales básicas relacionadas con la toma de decisiones, la comunicación, la solidaridad, el respeto o la resolución de conflictos, ya podrán cooperar realmente en el aula. Se ha comprobado que el trabajo cooperativo puede resultar muy beneficioso para el alumnado con TDAH (DuPaul y Stoner, 2014), especialmente en pequeños grupos y cuando enseñan a otros compañeros (tutoría entre iguales). Además, eso contribuye a generar un clima emocional positivo. Esto también es muy importante para los estudiantes con TDAH porque, en muchas ocasiones, son penalizados por la falta de precisión en los resultados finales de las tareas haciendo un esfuerzo superior al de sus compañeros. ¡Qué importante es relativizar los errores con sentido del humor!

Visuales y juguetones

En los últimos años, desde la neurociencia, se han utilizado programas de entrenamiento cognitivo, generalmente informatizados, que inciden en las regiones cerebrales que sustentan las distintas redes atencionales. Por ejemplo, a través de ejercicios que fomentan la focalización atencional y la discriminación perceptual (Rueda et al., 2016b). En especial, la importante atención ejecutiva, que los estudios longitudinales demuestran que contribuye al rendimiento académico del alumnado. Además, se ha comprobado que los videojuegos de acción inciden positivamente en el funcionamiento ejecutivo cerebral mejorando la agudeza visual, la flexibilidad cognitiva o las redes atencionales orientativa y ejecutiva (Green y Bavelier, 2015; ver figura 5). ¿Se pueden utilizar este tipo de estrategias en el caso del TDAH? Pues parece que sí. En un estudio holandés, niños de 11 años con TDAH realizaron un entrenamiento de la atención durante ocho sesiones de una hora. Jugaban a un videojuego en el que tenían que advertir la presencia de robots enemigos sin olvidar que debían impedir que la energía de su avatar bajara de un cierto umbral. Los niños que recibieron ese entrenamiento, tras cuatro semanas, mejoraron varios parámetros atencionales, entre ellos la capacidad de concentrarse pese a las distracciones, y no solo mientras jugaban (Tucha et al., 2011).

Asimismo, hay niños con TDAH que tienen problemas con la escritura como consecuencia de dificultades en la coordinación motora. En estos casos será muy beneficioso la utilización de determinados programas informáticos que posibilitan formas de expresión alternativas. Y no solo en los problemas de lectoescritura –tan comunes en los niños con TDAH porque muchos de ellos también son disléxicos– sino que, en general, la utilización de audiovisuales constituye una estupenda estrategia educativa ya que contextualiza la información y reduce la carga de la misma que reciben.

Los aspectos motivacionales son básicos en el aprendizaje y más en niños con TDAH porque pierden el interés por las tareas más rápidamente. Juegos como el ajedrez, actividades manuales, puzles y otros juegos creados de forma informal por los propios niños pueden optimizar su atención. Al igual que actividades artísticas como el baile, la música o el teatro porque requieren control motor, emocional y cognitivo. Y la realización de tareas o proyectos vinculados a situaciones reales siempre despertará la curiosidad más fácilmente vinculando el aprendizaje a cuestiones concretas, alejándonos de las típicas tareas académicas tantas veces abstractas y descontextualizadas.

En el fragor de la batalla

Los niños con TDAH se distraen con facilidad y les cuesta más manipular la información mentalmente debido a déficits en la memoria de trabajo. Por ello –en consonancia con lo que comentábamos en el apartado del movimiento– resulta muy útil dividir las tareas en otras más pequeñas y realizar los correspondientes parones entre las mismas. Eso también se puede hacer en exámenes escritos (una hora es una eternidad para estos estudiantes). Y las dificultades para manipular mentalmente la información pueden compensarse si se les permite convertir la resolución de problemas en algo manual, un enfoque cuya utilidad ya comentábamos en un artículo anterior sobre la cognición corporizada.

Una estrategia interesante para combatir la dificultad para aplazar las recompensas que manifiestan los niños con TDAH es mediante lo que se conoce como intenciones de implementación. Suelen tomar la forma de proposiciones del tipo “si X entonces Y” y sirven para planificar con antelación, como en el caso siguiente: “si me llama mi amiga Cristina le diré que no puedo ir al cine porque tengo que estudiar”. La práctica continuada de este tipo de estrategias posibilita a los niños con TDAH automatizar las respuestas sin tanto esfuerzo cognitivo. Y este aprendizaje les permite desenvolverse mejor en tareas ejecutivas, como algunas asociadas al control inhibitorio (Gawrilow et al., 2011). Todo en consonancia con el aprendizaje emocional que comentábamos anteriormente y que asumimos en Escuela con Cerebro como esencial.

El cerebro hiperactivo es un maestro de la procrastinación, aunque le encanten los desafíos iniciales que suponen las tareas. Terminar el trabajo en el aula puede representar un éxito para el maestro pero no para el estudiante con TDAH. En estos casos, se ha comprobado que resulta beneficioso utilizar recompensas inmediatas al acabar las tareas asignadas. Pero ello requiere una supervisión del adulto y suministrar un feedback frecuente e inmediato. Premiar las conductas adecuadas se puede hacer elogiando, animando, o suministrando ciertos privilegios. Pero siempre de forma personal, breve y precisa (Barkley, 2016). Una mano tendida en el hombro mejora mucho el exceso de comunicación oral al que estamos acostumbrados los docentes. La necesidad de las consecuencias inmediatas hace muy útil que el niño vaya informando de forma continuada sobre el trabajo que está realizando. En este sentido, los contratos conductuales en los que se explicita de forma clara los objetivos del trabajo y las consecuencias del mismo pueden ser muy útiles.

Conclusiones

Desde la perspectiva neuroeducativa se asume con naturalidad la importancia del movimiento, el juego, el arte y las emociones. Porque este enfoque es el que va a favorecer un mejor desarrollo cerebral. O si se quiere, es el que nos va a permitir trabajar de forma adecuada esas funciones cognitivas complejas que son necesarias para un buen desarrollo académico, pero también para el crecimiento personal del alumnado: las funciones ejecutivas. A través de una adecuada educación emocional –que en el aula parte de la formación del profesorado y que en casa depende de las familias–, podremos generar la necesaria mentalidad de crecimiento, que está en consonancia con lo que sabemos sobre el cerebro, plástico y en continua reorganización tanto funcional como estructural. No podemos seguir etiquetando y estigmatizando el comportamiento de tantos niños y adolescentes con todos los problemas que les acarreamos. En el caso del TDAH, son nuestras expectativas negativas las que, en muchas ocasiones, generan en la práctica los conflictos. Cuando se asumen con naturalidad las diferencias, las aulas son inclusivas y las escuelas abren las puertas a toda la comunidad educativa y a la sociedad. Así ganamos todos.

Jesús C. Guillén

.

Referencias:

  1. Barkley, Russell (2016). Managing ADHD in school: the best evidence-based methods for teachers. Eau Claire: PESI Publishing & Media.
  2. DuPaul G. J. y Stoner G. (2014). ADHD in the schools: assessment and intervention strategies. Nueva York: The Guilford Press.
  3. Gawrilow C., Gollwitzer P. M., y Oettingen G. (2011): “If-then plans benefit delay of gratification performance in children with and without ADHD”. Cognitive Therapy and Research, 35, 442–455.
  4. Green C. S. y Bavelier D. (2015): “Action video game training for cognitive enhancement”. Current Opinion in Behavioral Sciences 4, 103-108.
  5. Hart H. et al. (2013): “Meta-analysis of fMRI studies of inhibition and attention in ADHD: Exploring task-specific, stimulant medication and age effects”. JAMA Psychiatry 70, 185–198.
  6. Hoogman M. et al. (2017): “Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis”. Lancet Psychiatry 4(4), 310-319.
  7. Lakes K. D. y Hoyt W. T. (2004): “Promoting self-regulation through school-based martial arts training”. Applied Developmental Psychology 25, 283–302.
  8. Ma J. K. et al. (2015): “Four minutes of in-class high-intensity interval activity improves selective attention in 9- to 11-year olds”. Applied Physiology Nutrition and Metabolism 40, 238-244.
  9. Rubia K. et al. (2014): “Effects of stimulants on brain function in attention-deficit/hyperactivity disorder: a systematic review and meta-analysis”. Biological Psychiatry 76(8), 616-628.
  10. Rueda M. R. et al. (2016a): “Neurociencia cognitiva del desarrollo”. En Mente y cerebro: de la psicología experimental a la neurociencia cognitiva. Madrid: Alianza Editorial.
  11. Rueda M. R., Conejero A. y Guerra S. (2016b): “Educar la atención desde la neurociencia”. Pensamiento Educativo. Revista de Investigación Educacional Latinoamericana 53(1), 1-16.
  12. Sarver D. E. et al. (2015): “Hyperactivity in attention-deficit/hyperactivity disorder (ADHD): Impairing deficit or compensatory behavior?” Journal of Abnormal Child Psychology 43(7), 1219-1232.
  13. Stylianou M. et al. (2016): “Before-school running/walking club: effects on student on-task behavior”. Preventive Medicine Reports 3, 196-202.
  14. Taylor A.F. y Kuo F.E. (2009): “Children with attention deficits concentrate better after walk in the park”. Journal of Attention Disorders 12, 402–409.
  15. Tucha O. et al. (2011): “Training of attention functions in children with attention deficit hyperactivity disorder”. ADHD Attention Deficit and Hyperactivity Disorders 3(3), 271-283.
  16. Van der Oord S., Bögels S. M., Peijnenburg D. (2012): “The effectiveness of mindfulness training for children with ADHD and mindful parenting for their parents”. Journal of Child and Family Studies 21, 139-147.
  17. Volkow N. D. et al. (2011): “Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway”. Molecular Psychiatry 16(11), 1147-54.

 

Categorías:Neurodidáctica Etiquetas: , ,

Funciones ejecutivas en el aula: una nueva educación es posible

Hemos de preocuparnos por el bienestar emocional, social y físico de los niños si queremos que sean capaces de resolver problemas, ejercitar el autocontrol o utilizar de forma adecuada cualquier función ejecutiva.  

Adele Diamond

Cuenta Mariano Sigman (2015) -reconocido neurocientífico argentino- que, mientras estaba haciendo su doctorado, visitó un día el laboratorio de Álvaro Pascual-Leone cuando se comenzaba a utilizar la estimulación magnética transcraneal, una técnica que permite, por ejemplo, activar o inhibir regiones cerebrales de una forma no invasiva. Al joven Sigman le tentó participar en un experimento en el que se desactivaba temporalmente la corteza prefrontal. En esa situación, debía pensar palabras que empezaran con una letra que aparecía en una pantalla y, segundos más tarde, tenía que pronunciarlas. Sin embargo, con la corteza prefrontal inhibida, esa espera era imposible. En el momento de pensar las palabras empezaba a nombrarlas de forma compulsiva. Aunque sabía que tenía que esperar antes de decirlas, no podía hacerlo. Y es que sin la participación de la corteza prefrontal no es posible realizar tareas como la comentada. Una región cerebral que nos distingue como humanos y que es la sede de las llamadas funciones ejecutivas, funciones cognitivas complejas que nos definen como seres sociales y que nos permiten planificar y tomar decisiones adecuadas. Una especie de sistema rector que coordina las acciones y facilita la realización eficiente de las tareas, sobre todo cuando son novedosas o requieren mayor complejidad. Estas funciones ejecutivas -fundamentales en el desarrollo académico y personal del alumno- se pueden mejorar, por lo que su conocimiento constituye una auténtica necesidad educativa.

Consideraciones generales

La capacidad de controlar nuestras acciones depende de la integridad del sistema de función ejecutivo, una red extensa distribuida fundamentalmente en la corteza prefrontal. Esta región que nos hace realmente humanos está situada en la parte anterior del lóbulo frontal, es el área mejor conectada del cerebro (ver figura 1) y se desarrolla de forma mucho más lenta que otras regiones cerebrales. Aunque es la región más moderna del cerebro, también es la más vulnerable. El estrés, la tristeza, la soledad o una mala condición física pueden perjudicar el buen funcionamiento de la corteza prefrontal. De hecho, en una situación de estrés se pueden manifestar síntomas parecidos a los asociados al TDAH debido a la dificultad para pensar con claridad o ejercitar el adecuado autocontrol (Diamond y Ling, 2016).

Figura 1

La gran mayoría de los estudios publicados (Bagetta y Alexander, 2016) mencionan tres componentes básicos de las funciones ejecutivas que están directamente relacionados entre ellos y que permiten desarrollar otras funciones complejas como el razonamiento, la resolución de problemas o la planificación: el control inhibitorio, la memoria de trabajo y la flexibilidad cognitiva. Este conjunto de habilidades directamente vinculadas al proceso madurativo de la corteza prefrontal son muy importantes para la vida cotidiana y resultan imprescindibles para el éxito académico (Best et al., 2011) y el bienestar personal del alumno. Se pueden entrenar y mejorar a cualquier edad a través de procedimientos diferentes -tal como veremos en los apartados posteriores- con la práctica adecuada, por lo que enseñar al niño a desarrollar estas funciones ejecutivas debería ser una prioridad educativa (Diamond, 2013).

Control inhibitorio

Es la capacidad que nos permite inhibir o controlar de forma deliberada conductas, respuestas o pensamientos automáticos cuando la situación lo requiere. Así pues, a los niños a los que les cuesta inhibir los impulsos responden sin reflexionar, buscan recompensas inmediatas o tienen dificultades para proponerse objetivos a largo plazo, por ejemplo. En la práctica, será más fácil para el alumno comprometerse en una tarea o finalizarla si entiende las opciones que tiene antes de decidirse a actuar, reconoce cómo le afecta esa acción o puede visualizar la opción correcta para esa tarea (Moraine, 2014).

Un buen control inhibitorio del niño aparece cuando es capaz de mantener la atención en la tarea que está realizando sin distraerse (atención ejecutiva), tal como ocurre cuando participa en una canción grupal, interviene en una obra de teatro, realiza una construcción de bloques o intenta andar sin que se le caiga el huevo que sostiene con una cuchara en la boca. Ejemplos claros de la importancia del juego, de las artes y del movimiento a través de actividades tradicionales que facilitan el desarrollo de las funciones ejecutivas del niño. Y en cuanto al componente conductual de la inhibición (autocontrol), qué importante es que el niño disponga del tiempo necesario para reflexionar. Como en el caso de la tarea ‘día-noche’ en la que ha de responder ‘día’ cuando se le muestra una luna y ‘noche’ cuando aparece un sol. Unos segundos para cantar ‘piensa en la respuesta, no me la digas’ son suficientes para mejorar su desempeño en esa tarea típica de entrenamiento del autocontrol (ver video).

Memoria de trabajo

Es una memoria a corto plazo que nos permite mantener y manipular información que es necesaria para realizar tareas cognitivas complejas como razonar o aprender. Cuando el niño manifiesta déficits en su memoria de trabajo tiene dificultad para pensar en varias cosas a la vez u olvida el significado de lo que va escribiendo, por ejemplo. Por ello, resulta útil para estos niños subrayar, apuntar todo lo necesario, desarrollar ciertos automatismos al leer o escribir o clarificar los objetivos de aprendizaje (Marina y Pellicer, 2015).

La narración de historias constituye una estupenda forma de ejercitar la memoria de trabajo del niño porque focaliza la atención durante periodos de tiempo prolongados y necesita recordar todo lo que va sucediendo -como la identidad de los distintos personajes o detalles concretos de la historia- e integrar la nueva información en lo ya sucedido. Y como una muestra más de la naturaleza social del ser humano, se ha comprobado que cuando se le narra una historia al niño mejora más su vocabulario y el recuerdo de detalles de la misma que cuando la lee simplemente, siendo muy importante la interacción entre el adulto que cuenta la historia y el niño (Gallets, 2005). Asimismo, cuando el niño cuenta una historia al compañero que previamente ha escuchado, intenta memorizar la letra de una canción en la que interviene o participa en un juego que consiste en realizar movimientos concretos asociados a imágenes aparecidas, también ejercita su memoria de trabajo.

Flexibilidad cognitiva

Es la capacidad para cambiar de forma flexible entre distintas tareas, operaciones mentales u objetivos. Conlleva el manejo de estrategias fluidas que nos permiten adaptarnos a situaciones inesperadas pensando sin rigidez y liberándonos de automatismos poco eficientes. Como, por ejemplo, cuando el niño participa en una actividad en la que en unas situaciones ha de hablar y, en otras, ha de escuchar. O cuando tiene que elegir entre diferentes estrategias para resolver un problema y existe la necesidad de ser creativo. Es por ello que el desarrollo de la flexibilidad cognitiva se puede facilitar si utilizamos analogías y metáforas, planteamos problemas abiertos, permitimos diferentes opciones para la toma de decisiones o asumimos con naturalidad el error en el proceso de aprendizaje. Tareas como llevar una cometa, jugar a fútbol o caminar por un entorno natural conllevan un uso adecuado de la flexibilidad mental, porque se han de ir ajustando las decisiones a las circunstancias que se van dando.

En la práctica, estas funciones básicas pueden intervenir relacionadas. Así, por ejemplo, mediante el juego simbólico -una estupenda forma de fomentar el pensamiento creativo o la conciencia emocional-, los niños deben mantener su rol y recordar el de los compañeros (memoria de trabajo), actuar según el personaje elegido (control inhibitorio) o ajustarse a los cambios de roles (flexibilidad cognitiva). Y qué importante es no subestimar la capacidad de los niños y fomentar su autonomía, lo cual es posible si los adultos somos capaces también de controlar nuestros impulsos y no intervenir de forma prematura. En el siguiente video se muestra cómo un niño de 3 años es capaz de no distraerse ante los estímulos externos en el aula y de resolver una tarea con bloques focalizando la atención y perseverando ante la misma. Juega, disfruta y aprende.

A continuación analizamos brevemente algunos programas o intervenciones que se han puesto en práctica en el aula y que parecen incidir positivamente sobre el desarrollo de las funciones ejecutivas, especialmente en aquellos alumnos con peor funcionamiento de las mismas o que pertenecen a entornos socioeconómicos desfavorecidos:

Programas informáticos

Existen programas de ordenador que integran el componente lúdico, como Cogmed, que han resultado beneficiosos para mejorar la memoria de trabajo, aunque no está claro que esta mejora pueda transferirse a las tareas académicas (Roberts et al., 2016). Con el videojuego NeuroRacer (ver figura 2) que está diseñado para realizar dos tareas a la vez, una de discriminación perceptiva y otra de coordinación visomotora, se mejoró en adolescentes y en personas mayores la atención sostenida y la memoria de trabajo, dos capacidades no entrenadas (Anguera et al., 2013). Hay indicios de que determinados juegos de ordenador sí que pueden mejorar las capacidades cognitivas también en los niños, como en el caso del entrenamiento de la atención ejecutiva (Rueda et al., 2012).

Figura 2

Programas de actividad física

Aunque los programas de actividad física continuados han producido efectos positivos sobre el aprendizaje en niños y adolescentes, los mejores resultados para las funciones ejecutivas se obtienen cuando se combina con una mayor actividad mental, como en el caso de las artes marciales. En un estudio en el que participaron niños con edades comprendidas entre los 5 y los 11 años se analizaron los efectos producidos por un programa de taekwondo respecto a los de un programa de educación física tradicional. Después de tres meses, los resultados indicaron que los alumnos del grupo de artes marciales habían mejorado más que los del otro grupo en todas las medidas realizadas de las funciones ejecutivas, tanto cognitivas como afectivas, y en la autorregulación emocional (Lakes y Hoyt, 2004), algo especialmente útil en alumnos con TDAH.

Programas de educación emocional

Este tipo de programas promueven el aprendizaje de toda una serie de competencias sociales y emocionales, como el autocontrol u otras asociadas a las funciones ejecutivas. Así, por ejemplo, en el programa PATHS se les enseña a los niños que cuando están enfadados han de abrazarse como una tortuga y hacer un par de respiraciones profundas. Este parón les ayuda a calmarse. Y muy beneficiosos han resultado también programas que incorporan técnicas de relajación y meditación en el aula, como MindUP. Este programa de entrenamiento en mindfulness que se combina con actividades que promueven el optimismo, la gratitud o la bondad incide sobre las funciones ejecutivas de los niños mejorando su control inhibitorio (ver figura 3) y su gestión del estrés (Schonert-Reichl et al., 2015).

Figura 3

Enseñanza bilingüe

Nuestro cerebro tiene una enorme capacidad para aprender varias lenguas en la infancia temprana y ello confiere diversas ventajas. Las personas bilingües muestran una mejor atención ejecutiva y obtienen mejores resultados en tareas que requieren control inhibitorio, memoria de trabajo visuoespacial o flexibilidad cognitiva. En el caso de niños de 5 años ya se han identificado los patrones de actividad electrofisiológica que diferencian a los cerebros bilingües respecto a los monolingües y que les permiten un mejor desempeño ejecutivo (Barac, Moreno y Bialystoc, 2016). Incluso, cuando bebés de 7 meses aprenden a identificar una señal auditiva o visual que anticipa la aparición de un objeto en una pantalla, aquellos que son educados en un entorno bilingüe son capaces de reorientar la atención cuando el objeto aparece de forma sorpresiva en otra posición, a diferencia de los monolingües que siguen esperando que el objeto aparezca en la misma situación (Kovacs y Mehler, 2009; ver figura 4).

Figura 4

En la práctica

Como hemos comentado, existen diferentes formas de entrenar directamente las funciones ejecutivas. Sin embargo, Adele Diamond (2014), una de las pioneras en el campo de la neurociencia cognitiva del desarrollo, sugiere que las tareas que provocan la mayor mejora de las funciones ejecutivas son aquellas que las trabajan de forma indirecta, incidiendo en aquello que las perjudica -como el estrés, la tristeza, la soledad o una mala salud- provocando mayor felicidad, vitalidad física y un sentido de pertenencia al grupo. ¿Y cuáles son estas estrategias? Pues todas aquellas que están en concordancia con lo que proponemos desde la neuroeducación. Si para un buen funcionamiento ejecutivo lo más importante es fomentar el bienestar emocional, social o físico, el aprendizaje del niño tiene que estar vinculado al juego, el movimiento, las artes o la cooperación. O si se quiere, nada mejor para facilitar un aprendizaje eficiente y real que promover la educación física, el juego, la educación artística y la educación socioemocional. Todo ello en consonancia con el proceso natural de maduración del cerebro humano porque en cualquier cultura los niños aprenden a descubrir el mundo que les envuelve bailando, cantando, dibujando, jugando, compartiendo, resolviendo retos… todas ellas tareas que colman las necesidades sociales que tenemos los seres humanos. Seguramente, el entrenamiento puramente cognitivo no es la mejor forma de mejorar la cognición. El éxito académico y personal requiere atender las necesidades sociales, emocionales y físicas de los niños. Una nueva educación es posible. Nuestro cerebro plástico y social agradecerá el nuevo cambio de paradigma.

Jesús C. Guillén

Referencias:

  1. Anguera et al. (2013): “Video game training enhances cognitive control in older adults”. Nature 501(7465), 97-101.
  2. Baggetta P., Alexander P. A. (2016): “Conceptualization and Operationalization of Executive Function”. Mind, Brain, and Education 10 (1), 10-33.
  3. Barac R., Moreno S., Bialystok E. (2016): “Behavioral and electrophysiological differences in executive control between monolingual and bilingual children”. Child Development 87 (4), 1277-1290.
  4. Best J. R. et al. (2011): “Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national simple”. Learning and Individual Differences 21, 327-336.
  5. Diamond A., Ling D. S. (2016): “Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not”. Developmental Cognitive Neuroscience 18, 34-48.
  6. Diamond A. (2013): “Executive functions”. The Annual Review of Psychology 64, 135-168.
  7. Diamond A. (2014): “Executive functions: Insights into ways to help more children thrive”. Zero to Three 35(2), 9-17.
  8. Gallets M. P. (2005): “Storytelling and story reading: a comparison of effects on children’s memory and story comprehension”. Electronic Theses and Dissertations. Paper 1023.
  9. Kovács A. M., Mehler J. (2009): “Cognitive gains in 7-month-old bilingual infants”. PNAS 106, 6556–6560.
  10. Lakes K. D., Hoyt W. T. (2004): “Promoting self-regulation through school-based martial arts training”. Applied Developmental Psychology 25, 283–302.
  11. Marina, José Antonio y Pellicer, Carmen (2015). La inteligencia que aprende. Madrid: Santillana.
  12. Moraine, Paula (2014). Las funciones ejecutivas del estudiante. Madrid: Narcea.
  13. Purper-Ouakil D. et al. (2011): “Neurobiology of attention deficit/hyperactivity disorder”. Pediatric Research 69 (5), 69-76.
  14. Roberts G. et al. (2016): “Academic outcomes 2 Years after working memory training for children with low working memory: a randomized clinical trial”. JAMA Pediatrics 170(5): e154568.
  15. Rueda M. R. et al. (2012): “Enhanced efficiency of the executive attention network after training in preschool children: Immediate changes and effects after two months”. Developmental Cognitive Neuroscience 2(1), 192-204.
  16. Schonert-Reichl K. A. et al. (2015): “Enhancing cognitive and social – emotional development through a simple-to-administer mindfulness-based school program for elementary school children: a randomized controlled trial”.Developmental Psychology 51, 52-66.
  17. Sigman, Mariano (2015). La vida secreta de la mente: nuestro cerebro cuando decidimos, sentimos y pensamos. Buenos Aires: Debate.

¿Cuáles son las asignaturas más importantes para el cerebro?

El excesivo interés por ciertas asignaturas y capacidades acarrea la marginación casi sistemática de otras competencias e intereses de los alumnos. Inevitablemente, muchos de ellos desconocen cuáles son sus auténticas capacidades y, en consecuencia, sus vidas pueden ser menos plenas.

Ken Robinson

Lo asumimos. Suena mal. El mundo jerarquizado de las asignaturas que hemos creado los adultos está alejado de las necesidades actuales. De hecho, una de las grandes diferencias entre las etapas educativas iniciales (Infantil y Primaria) y las etapas superiores (Secundaria y la Universidad) radica en que en las primeras se enseña a los niños, mientras que en las posteriores se enseña asignaturas. Pero sigue predominando en la mayoría de los sistemas educativos, en los que se han considerado prioritarias algunas de ellas y se han relegado a un papel secundario otras muchas. Sin embargo, desde la perspectiva integradora de la neuroeducación en la que consideramos como básico un aprendizaje directamente vinculado al mundo real, significativo, competencial e interdisciplinar, se plantea un enfoque diferente. Las matemáticas, las ciencias o la lengua no dejan de ser importantes -que lo son- pero comparten protagonismo con otras asignaturas (¿mejor disciplinas?) que no marginarán muchas competencias e intereses de los alumnos, y que facilitarán un mayor aprendizaje, más eficiente y, en definitiva, real. Porque nuestro cerebro necesita, y mucho, la educación socioemocional, la educación física, la educación artística y el juego. A continuación, compartimos con todos los seguidores de Escuela con Cerebro algunas evidencias empíricas que justifican la aplicación de este nuevo paradigma educativo.

Educación socioemocional

Las emociones sí importan

No podemos separar lo cognitivo de lo emocional. Cuando en el laboratorio se muestra a los participantes del experimento imágenes que corresponden a contextos emocionales diferentes, se activan regiones del cerebro concretas. Ante las fotografías que generan emociones positivas se activa el hipocampo y ello posibilita que los participantes puedan memorizar más palabras en ese contexto (Erk et al., 2003; ver figura 1). Esto sugiere la necesidad de generar en el aula climas emocionales positivos y seguros en los que se asume con naturalidad el error, en donde los alumnos cooperan y son protagonistas activos del aprendizaje o en los que las expectativas, tanto del profesor como del alumno, son siempre positivas. Este es el camino directo para facilitar el aprendizaje en el aula.

Figura 1

Junto a esto, los estudios longitudinales confirman los anteriores resultados. En un metaanálisis de varios años de duración en el que participaron más de 270.000 alumnos hasta la etapa preuniversitaria, se compararon 213 escuelas que utilizaban programas de aprendizaje socioemocional con otras que no los utilizaban. Respecto a los grupos de control, los participantes en los programas socioemocionales impartidos en primaria mostraron mejoras significativas en las habilidades sociales y emocionales, con actitudes más positivas y mayor compromiso escolar a los 18 años de edad. Y no sólo eso, sino que obtuvieron una mejora en el rendimiento académico del 11%, en promedio (Durlak et al., 2011; ver figura 2).

Figura 2

Desde la perspectiva neuroeducativa entendemos que la educación ha de ser integral, es decir, no puede limitarse a la adquisición de conocimientos o destrezas, sino que debe orientarse a formar personas. Y en eso consiste la educación emocional, en la adquisición de toda una serie de competencias emocionales que van a capacitar a la persona para la vida, fomentando su bienestar personal y social. Porque cambia y mejora nuestro cerebro. Pero para que el diseño, la implementación y la evaluación de estos programas de educación emocional sean eficientes se deben cumplir ciertas condiciones. Las más relevantes son las siguientes (Bisquerra et al., 2015):

  • Basar el programa en un marco conceptual sólido.
  • Especificar los objetivos del programa en términos evaluables.
  • Realizar esfuerzos coordinados que impliquen a toda la comunidad educativa.
  • Asegurar el apoyo del centro.
  • Impulsar una implantación sistemática a lo largo de varios años.
  • Emplear técnicas de enseñanza-aprendizaje activas y participativas que promuevan el aprendizaje cooperativo y sean variadas.
  • Incluir planes de formación y de asesoramiento del personal responsable del programa.
  • Incluir un plan de evaluación del programa antes, durante y después de su aplicación.

Consideramos especialmente importante que la implementación de estos programas se inicie en las primeras etapas educativas, las cuales tienen una incidencia específica en las funciones ejecutivas del cerebro (control inhibitorio, memoria de trabajo y flexibilidad cognitiva, las básicas). Pero para ello es necesario que el profesor conozca las estrategias adecuadas que permiten optimizar y desarrollar de forma apropiada estas importantes funciones ejecutivas. Y para fomentar un trabajo cooperativo eficiente en el aula es necesario enseñar a los alumnos diversas competencias emocionales básicas, lo cual resulta imposible si el docente no utiliza estas técnicas en su práctica diaria (no solo han de cooperar los alumnos). Porque el éxito de cualquier programa de educación emocional parte siempre de la formación del profesorado.

Cuando se añaden a este tipo de programas las prácticas contemplativas, como el mindfulness, se mejoran los resultados obtenidos en relación a cuando se utilizan estas técnicas por separado. Por ejemplo, cuando un niño está alterado, decirle que tome conciencia de sus propias emociones puede ser insuficiente; o la simple práctica del mindfulness no garantiza que adquiera las competencias necesarias para resolver conflictos. Sin embargo, cuando se integra el mindfulness en los programas de educación socioemocional, algunas de sus competencias se ven reforzadas: la autoconciencia adopta una nueva profundidad de exploración interior, la gestión emocional fortalece la capacidad para resolver conflictos y la empatía se convierte en la base del altruismo y la compasión (Lantieri y Zakrzewski, 2015). Y cuando se utilizan este tipo de estrategias, mejora la capacidad atencional (ver figura 3) y la gestión del estrés de los alumnos (Schonert-Reichl et al., 2015), lo cual incide positivamente sobre su rendimiento académico, pero también –y más importante- sobre su bienestar personal. Y eso no se restringe a una etapa educativa concreta.

Figura 3

Educación física

Bueno para el corazón, bueno para el cerebro

El ejercicio tiene una incidencia positiva en nuestra salud física, emocional, pero también cognitiva. Ya hace algunos años que se demostraron los beneficios de la actividad física sobre el cerebro de personas de edad avanzada. Y en los últimos tiempos, también se han realizado investigaciones que muestran su importancia sobre el cerebro de niños y adolescentes. Además de ser un estupendo recurso para combatir el tan temido estrés crónico o mejorar el bienestar, el ejercicio puede beneficiar el funcionamiento de las funciones ejecutivas que tienen una incidencia directa sobre el desarrollo académico y personal del alumnado. Y ello se debe a que durante el ejercicio se liberan toda una serie de moléculas (BDNF o IGF-1, por ejemplo) que intervienen en procesos neuronales básicos, como la plasticidad sináptica, la neurogénesis o la vascularización cerebral (Gómez-Pinilla y Hillman, 2013), junto al incremento del nivel de neurotransmisores imprescindibles para un buen aprendizaje, como la dopamina (motivación), serotonina (estado de ánimo) o noradrenalina (atención), por ejemplo.

Los niños o adolescentes que practican deporte y poseen una mejor capacidad cardiovascular, tienen un hipocampo mayor y, como consecuencia de ello, se desenvuelven mejor en tareas que requieren la memoria explícita (Chaddock et al., 2010; ver figura 4).

Figura 4

Y aquellos alumnos que realizan pruebas académicas relacionadas con la comprensión lectora, la ortografía o la aritmética tras una actividad aeróbica moderada de 20 minutos (caminando o corriendo en la cinta, por ejemplo), obtienen mejores resultados que aquellos que han estado en una situación pasiva en ese intervalo de tiempo (Hillman et al., 2009). Incluso, simples parones de 4 minutos en la actividad académica diaria de niños en educación primaria para realizar una serie de movimientos rápidos son suficientes para optimizar la atención necesaria que requiere la tarea posterior y mejorar el desempeño en la misma (Ma et al., 2015; ver figura 5). Esto será muy útil para todos los alumnos, en general, pero especialmente para aquellos con TDAH, que tienen mayores dificultades para focalizar la atención durante periodos de tiempo prolongados. Los síntomas que caracterizan a estos niños con TDAH parecen reducirse cuando pueden moverse y jugar en entornos naturales. Y también se ha comprobado la utilidad de combinar el ejercicio físico con una mayor actividad mental como se da, por ejemplo, en el caso de las artes marciales. Un programa de taekwondo de tres meses de duración mejoró los procesos de autorregulación que posibilitaron mejoras, tanto conductuales como académicas, en los niños que participaron en los mismos (Lakes y Hoyt, 2004).

Figura 5

Las implicaciones educativas de estas investigaciones sugieren la necesidad de dedicar más tiempo a la educación física y no de relegarla a las últimas horas de la jornada escolar, como suele hacerse tradicionalmente. Esto en la práctica se ha comprobado, por ejemplo, con el programa Zero Hour de las escuelas Naperville 203 en Illinois, el cual ha permitido mejorar el bienestar personal de los alumnos y su rendimiento académico general (Ratey y Hagerman, 2010). Y cuando se han aplicado programas de ejercicio físico antes del inicio de la jornada escolar en los que los niños caminan o corren durante 15-20 minutos, mejora su comportamiento, su concentración durante las tareas y su disposición para el aprendizaje en las horas posteriores (Stylianou et al., 2016). Las últimas recomendaciones sobre el tiempo adecuado para optimizar la salud y el rendimiento académico de los alumnos son las siguientes: 150 minutos semanales en primaria y 225, como mínimo, en secundaria (Castelli et al., 2015).

Junto al necesario protagonismo de la educación física, también resulta fundamental enseñar al alumnado la importancia que tienen el sueño y la alimentación sobre el aprendizaje, tanto a corto como a largo plazo.

Educación artística

El arte: una necesidad cerebral

Los niños descubren de forma natural el mundo que les rodea cantando, dibujando, bailando o recreando, todas ellas actividades vinculadas al arte. Y ello es necesario para un adecuado desarrollo sensorial, motor, cognitivo y emocional. Las investigaciones muestran que las diferentes variedades artísticas pueden incidir de forma positiva en el aprendizaje del alumnado. Así, por ejemplo, existen diversas evidencias empíricas que demuestran que la música (ver figura 6) mejora el rendimiento académico o la lectura, el teatro fortalece las habilidades verbales y las artes visuales pueden beneficiar el razonamiento geométrico (Winner et al., 2014). Pero por encima de estas particularidades, la educación artística resulta necesaria porque nos permite adquirir toda una serie de hábitos mentales y competencias básicas en los tiempos actuales -como la creatividad, cooperación, pensamiento crítico, resolución de problemas o iniciativa- que están en consonancia con la naturaleza social del ser humano y que son imprescindibles para el aprendizaje de cualquier contenido curricular. Porque al experimentar el arte creado por otros vemos y sentimos el mundo como ellos. ¡Dichosas neuronas espejo!

Figura 6

Sousa y Pilecki (2013) han identificado algunas de las razones por las que las artes constituyen une necesidad para los estudiantes de cualquier etapa educativa: activan el cerebro, hacen la enseñanza más interesante, reducen el estrés, introducen novedad, fomentan la cooperación, promueven la creatividad, mejoran la memoria a largo plazo y favorecen el desarrollo intelectual. Y existen diversos estudios que confirman esto. Por ejemplo, cuando se diseña una unidad didáctica de ciencias en la que los alumnos realizan actividades que incluyen actuaciones teatrales, dibujos de posters, recreación de movimientos o utilización de la música, en consonancia con los objetivos de aprendizaje identificados, mejoran la memoria a largo plazo frente a aquellos que siguen un enfoque tradicional (Hardiman et al., 2014). Una muestra clara de la necesidad de asumir un enfoque educativo interdisciplinar en el que las diferentes disciplinas se solapan de forma natural y no son independientes. Porque enseñar poesía de Lope de Vega a ritmo de rap, convertir la clase de biología en una galería de arte (ver figura 7) o pedir a los alumnos de matemáticas que escriban unas estrofas donde relatan los pasos que deben seguir para aplicar un teorema, puede motivar y facilitar el aprendizaje. No podemos pedir a nuestros alumnos que sean creativos si nosotros no hacemos el esfuerzo por serlo. Y más sabiendo que la creatividad no es innata y puede mejorarse con el entrenamiento adecuado.

Figura 7

Los programas de educación artística pueden resultar especialmente beneficiosos para adolescentes que pertenecen a entornos socioeconómicos desfavorecidos. En un estudio de tres años se permitió elegir a los alumnos entre diferentes formas artísticas como la música, la pintura, la grabación de videos, la escritura de guiones o el diseño de máscaras. Luego profundizaban más en sus elecciones a través de la cooperación y, finalmente, realizaban una recreación teatral o grababan en video su trabajo realizado. Los tres años de aplicación del programa revelaron que los estudiantes mejoraron sus habilidades artísticas y sociales, redujeron sus problemas emocionales y, en general, desarrollaron más que el grupo de control diversas competencias interpersonales como la comunicación, la cooperación o la resolución de conflictos (Wright et al., 2006).

En la práctica, los alumnos desarrollan un pensamiento más profundo y creativo cuando se integran las artes en los contenidos curriculares. Un ejemplo de ello lo representa el programa Artful Thinking desarrollado por el Project Zero de la Universidad de Harvard que utiliza el poder de las imágenes visuales para desarrollar la creatividad y facilitar el aprendizaje. A través de la metáfora de la paleta de un pintor se estimula en los alumnos procesos como el cuestionamiento, la observación, el razonamiento, la indagación o la comparación (ver figura 8).

Figura 8

Existen también centros como las escuelas A+, en Carolina del Norte, que se han comprometido a enseñar arte todos los días a través de un plan de estudios consensuado que favorece múltiples formas de aprendizaje más cercano a la realidad y en el que interviene toda la comunidad educativa. Los resultados muestran un incremento de satisfacción entre el alumnado y el profesorado y una mejora del rendimiento académico de los estudiantes. Algo que está en consonancia con el famoso estudio longitudinal dirigido por James Catterall (2009) que duró 12 años y en el que intervinieron 12000 alumnos de las etapas preuniversitarias. Los resultados indicaron que la educación artística tiene una incidencia positiva en el rendimiento académico del alumnado y en el desarrollo de conductas prosociales.

Juego

Juego, me divierto y aprendo

El juego constituye un mecanismo natural arraigado genéticamente que suscita la curiosidad, es placentero y nos permite adquirir toda una serie de competencias básicas para la vida que están en plena consonancia con nuestra naturaleza social. Y, por ello, es necesario para el aprendizaje y constituye un recurso que debe utilizarse a cualquier edad y en cualquier etapa educativa. En experimentos con ratas -poseen una genética parecida a la nuestra- se ha comprobado que se altera el desarrollo normal del cerebro de las crías cuando se les impide jugar, manifestando en el futuro déficits de comportamiento social y conductas agresivas ante estímulos novedosos. Aunque algunos de los experimentos realizados con ratas, obviamente, no pueden ser replicados en seres humanos, existen indicios que mostrarían que los niños a los que se les impide jugar con normalidad tendrían mayor probabilidad de desarrollar en el futuro problemas de personalidad, impulsividad o una menor capacidad metacognitiva (Iliceto et al., 2015).

El juego es imprescindible para el aprendizaje debido, básicamente, al reto asociado al mismo que nos motiva y al feedback suministrado que nos va aportando información continua sobre cómo vamos progresando. Cuando en el laboratorio se han analizado los cerebros de personas jugando, se ha comprobado que se activa el llamado sistema de recompensa cerebral asociado a la dopamina que despierta nuestra motivación intrínseca y que, en definitiva, nos permite aprender. Pero también, durante el feedback suministrado, se desactiva la red neuronal por defecto y así se facilita que el jugador pueda enfocar la atención hacia los estímulos externos (Howard-Jones et al., 2016; ver figura 9).

Figura 9

A raíz de todo lo anterior, se antoja necesario integrar el componente lúdico en el aula. Pero mantener el interés de los alumnos por el juego durante un trimestre o un curso escolar completo constituye un reto mucho mayor que incorporar una actividad lúdica un día aislado. En este caso concreto, hablamos ya de gamificación, la cual convierte la clase en una experiencia de juego, y no consiste en enmascarar con puntos, rankings o avatares lo que siempre hemos hecho. Porque para implementar un diseño educativo gamificado real hemos de identificar los objetivos de aprendizaje (¿por qué queremos gamificar esa experiencia?), crear la narrativa o historia (ver figura 10) que guiará el proceso (¿cómo participarán los alumnos en la experiencia?, ¿cómo se desarrollará la historia?, etc.) y cómo se integrarán las dinámicas (¿cómo trabajarán los alumnos?, ¿qué tipos de actividades les pediremos?, etc.) y las mecánicas propias del juego (puntos, avatares, rankings, insignias, niveles, etc.) que harán progresar la acción y motivarán e involucrarán al alumno en la historia.

Figura 10

Y en este proceso, las tecnologías digitales constituyen un recurso que puede facilitar enormemente el aprendizaje. La utilización de animaciones (ver figura 11), líneas del tiempo, infografías, murales digitales, screencasts, realidad aumentada, videojuegos… constituye en el fondo una actualización de las prácticas pedagógicas convencionales que puede ser aprovechada para atender la diversidad en el aula.

Figura 11

De hecho, en muchas investigaciones en neurociencia se han utilizado programas y aplicaciones informáticas basadas en el juego con la finalidad de mejorar determinados trastornos del aprendizaje o funciones mentales y, en muchos casos, se han llegado a comercializar. Graphogame (dislexia), Number Race (discalculia) o NeuroRacer (memoria de trabajo) son algunos ejemplos conocidos.

Cuando se utilizan este tipo de estrategias en el aula, resulta natural integrar en las mismas metodologías inductivas en las que el profesor propone retos y preguntas que suscitan la curiosidad del alumno, fomentan su autonomía, favorecen el trabajo cooperativo y proporcionan experiencias de aprendizaje vinculadas al mundo real que permiten una mayor interdisciplinariedad. Algunos ejemplos conocidos son el aprendizaje basado en problemas o proyectos, la enseñanza por medio del estudio y discusión de casos o el aprendizaje por indagación. Y otro buen ejemplo que integra también con naturalidad esta forma de trabajar es el modelo Flipped Clasroom en el que se invierte el proceso tradicional en el aula. En casa, el alumno ve videos cortos, a su propio ritmo, relacionados con los contenidos que se están trabajando y esta información puede consultarla cuando lo desee (ver figura 12). Mientras que el tiempo en el aula se aprovecha para realizar tareas de aprendizaje activo que fomenten la reflexión y la adquisición de hábitos intelectuales como, por ejemplo, resolución de problemas, proyectos cooperativos o prácticas de laboratorio, con lo que el profesor puede ser más sensible a las necesidades particulares y disponer de más tiempo para ello.

Figura 12

Está claro que los nuevos tiempos requieren nuevas necesidades educativas. Nuestro cerebro plástico y social -en continua reorganización- agradece este tipo de retos y así sigue mejorando su funcionamiento y el de los demás.

Jesús C. Guillén

.

Referencias:

  1. Bisquerra R., Pérez González J. C. y García E. (2015). Inteligencia emocional en educación. Madrid: Síntesis.
  2. Blood A. J. & Zatorre R. (2001): “Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion”. PNAS 98 (20), 11818-11823.
  3. Castelli, D. M. et al. (2015): “Active education: growing evidence on physical activity and academic performance”. Active Living Research.
  4. Catterall J. S. (2009). Doing well and doing good by doing art: the effects of education in the visual and performing arts on the achievements and values of young. Los Angeles/London: Imagination Group/IGroup Books.
  5. Chaddock L. et al. (2010): “A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children”. Brain Research 1358, 172-183.
  6. Durlak, J.A. et al. (2011): “The impact of enhancing students’ social and emotional learning: a meta-analysis of school-based universal interventions”. Child Development 82, 405-432.
  7. Erk, S. et al. (2003): “Emotional context modulates subsequent memory effect”. Neuroimage, 18, 439-447.
  8. Gómez-Pinilla F. and Hillman C. (2013): “The influence of exercise on cognitive abilities”. Comprehensive Physiology 3, 403-428.
  9. Hardiman M. et al. (2014): “The effects of arts integration on long-term retention of academic content”. Mind, Brain and Education, 8(3), 144-148.
  10. Hillman C.et al. (2009): “The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children”. Neuroscience 159, 1044-1054.
  11. Howard-Jones P. A., Jay T., Mason A., Jones H. (2016): “Gamification of learning deactivates the default mode network”. Frontiers in Psychology 6 (1891).
  12. Iliceto P. et al. (2015): “Brain emotion systems, personality, hopelessness, self/other perception, and gambling cognition: a structural equation model”. Journal of Gambling Studies, April 18, 1-13.
  13. Lakes K. D., Hoyt W. T. (2004): “Promoting self-regulation through school-based martial arts training”. Applied Developmental Psychology 25, 283–302.
  14. Lantieri L. y Zakrzewski V. (2015): “How SEL and Mindfulness Can Work Together”:

http://greatergood.berkeley.edu/article/item/how_social_emotional_learning_and_mindfulness_can_work_together

  1. Ma J. K., Le Mare L., Gurd B. J. (2015): “Four minutes of in-class high-intensity interval activity improves selective attention in 9- to 11-year olds”. Applied Physiology Nutrition and Metabolism 40, 238-244.
  2. Ratey, John J. y Hagerman, Eric (2010). Spark! How exercise will improve the performance of your brain. London: Quercus.
  3. Robinson, Ken y Aronica, Lou (2015). Escuelas creativas. La Revolución que está transformando la educación. Barcelona: Grijalbo.
  4. Schonert-Reichl K. A. et al. (2015): “Enhancing cognitive and social-emotional development through a simple-to-administer mindfulness-based school program for elementary school children: a randomized controlled trial”. Developmental Psychology 51(1), 52-66.
  5. Sousa, David A. (Anthony), Pilecki, Thomas J. (2013). From STEM to STEAM: Using Brain-Compatible Strategies to Integrate the Arts. Thousand Oaks: Corwin.
  6. Stylianou M. et al. (2016): “Before-school running/walking club: effects on student on-task behavior”. Preventive Medicine Reports 3, 196-202.
  7. Winner, E., T. Goldstein y S. Vincent-Lancrin (2014). ¿El arte por el arte? La influencia de la educación artística. OECD Publishing.
  8. Wright R. (2006): “Effect of a structured performing arts program on the psychosocial functioning of low-income youth: findings from a Canadian longitudinal study”. Journal of Early Adolescence, 26.

El cerebro lector: algunas ideas clave

Cuanto antes se automatice la lectura, más podrá el niño concentrar su atención en comprender lo que lee y volverse así un lector autónomo, tanto para aprender otras cosas como para su propia diversión.

Stanislas Dehaene

La lectura constituye una de las actividades más asequibles para mantener una buena salud cerebral porque en ese proceso intervienen muchas funciones cognitivas diferentes, como la percepción, la atención, la memoria o el razonamiento. Al leer, se activa una gran cantidad de circuitos neuronales y regiones concretas del cerebro (ver figura 1) que nos permiten, en milésimas de segundo, reconocer las letras, combinarlas para formar grafemas y palabras, asignarles sonidos para poder pronunciarlas y dotarlas de significado.

El aprendizaje de la lectura es una de las áreas de investigación en neurociencia que ha suministrado más información novedosa con implicaciones pedagógicas en los últimos años. Y es esa información la que queremos compartir con todos vosotros en este nuevo artículo en Escuela con Cerebro, especialmente las investigaciones dirigidas por uno de los grandes neurocientíficos de esta época: Stanislas Dehaene.

Figura 1

Leer no es natural

La lectura no constituye una actividad natural para el niño. El invento de la escritura hace 5000 años es demasiado reciente para que pueda haber influido a nivel evolutivo en nuestro cerebro por lo que, a diferencia del lenguaje hablado, constituye una habilidad que debemos aprender porque no disponemos en nuestra herencia genética de circuitos neurales específicos para la lectura. Esta es la razón por la que su aprendizaje puede ser más difícil en muchos niños, como en el caso de la dislexia. Afortunadamente, la plasticidad inherente al cerebro humano ha desarrollado un papel esencial en el reordenamiento y especialización de redes neuronales primitivas y esa misma plasticidad cerebral puede actuar como mecanismo de compensación ante las dificultades en el aprendizaje de la lectura.

Aunque la lectura es una destreza nueva para el cerebro, su aprendizaje varía según la lengua. Así, por ejemplo, en lenguas transparentes como el español, los niños requieren menos tiempo para aprender la gran mayoría de las palabras debido a que existe una correspondencia entre fonemas y grafemas (un sonido corresponde a una letra), mientras que el proceso se ralentiza en lenguas más opacas como el inglés debido a sus mayores irregularidades (Dehaene, 2015).

Los bebés, genios lingüísticos

Antes de aprender a leer, el cerebro del bebé ya está organizado para el lenguaje hablado activando, con pocos meses de edad, circuitos neurales del hemisferio izquierdo idénticos a los que activan los adultos al escuchar frases en su lengua materna (Dehaene, 2013). Los bebés son capaces, en los primeros meses, de reconocer sonidos de cualquier idioma pero antes de cumplir los dos años ya muestran preferencias por aquellos de la lengua a la que están expuestos (Kuhl, 2010). Y cuando el niño tiene dos años puede nombrar los objetos en voz alta porque tiene un sistema visual organizado que le permite identificarlos. Pero leer una palabra requiere mayor complejidad y los estudios en neurociencia revelan que para reconocer letras y palabras escritas se ha de reciclar una región específica de la corteza visual: el área visual de formación de palabras o “caja de letras del cerebro” (en inglés VWFA, visual word form area, o letterbox), una región en la que se concentra gran parte del conocimiento visual de las letras y de sus combinaciones (ver figura 2). Sin olvidar que aunque existan periodos sensibles en el aprendizaje de la lectura, un aprendizaje temprano del niño a los 3 años de edad no tiene por qué ser más eficiente que cuando se da a los siete u ocho años, por ejemplo (Tokuhama-Espinosa y Rivera, 2013).

Figura 2

Reciclaje neuronal

Las evidencias empíricas sugieren que para el aprendizaje de la lectura se necesita que una parte de las neuronas de una región que integra las áreas visuales del cerebro del niño en el lóbulo temporal izquierdo y que le sirven para reconocer objetos y rostros, la llamada “caja de letras”, se recicle para que pueda responder cada vez más a las letras y las palabras (Dehaene y Cohen, 2011). Esta importante región que interviene en un circuito de lectura universal que comprende rutas tanto fonológicas como semánticas, se activa de forma proporcional a la capacidad lectora, es decir, los lectores adultos y los niños que aprendieron a leer activan más la “caja de letras” que las personas analfabetas o los niños que no han aprendido a leer todavía (ver figura 3), respectivamente (Dehaene, 2014). Y no solo es esta región cerebral la que se desarrolla, porque aprendiendo a leer se mejoran circuitos que codifican la información visual o los sonidos de las palabras, lo cual tiene una incidencia positiva en la memoria oral.

Figura 3

Conciencia fonológica

La conciencia fonológica es una competencia esencial en el aprendizaje de la lectura que permite al niño ser consciente de los sonidos elementales, los fonemas, que componen las palabras del lenguaje hablado. En la fase inicial del aprendizaje de la lectura, en el que se va conociendo el abecedario, es imprescindible la decodificación fonológica que permitirá al niño ir articulando los fonemas que forman una sílaba (caaa-saaa) y descomponer cada palabra letra a letra (c-a-s-a) para identificarla y conocer su significado. Cuando el proceso se vaya automatizando, el cerebro ya no necesitará descomponer la palabra letra a letra y la identificará con su representación ortográfica buscando su significado. En la práctica, puede acelerarse la adquisición de la conciencia fonológica con juegos lingüísticos como adivinanzas, rimas, rondas infantiles, etc. (Shanahan y Lonigan, 2010).

Atención, pero la adecuada

En el niño existirá una tendencia natural a interpretar la palabra como un todo. Pero se requiere una atención selectiva para poder ir identificando las letras que conforman las palabras. En la práctica, se ha comprobado que no es suficiente exponer al niño a letras sino que hay que ir enseñando de forma sistemática las correspondencias entre fonemas y grafemas para acelerar el aprendizaje de la lectura porque es lo que permite que áreas corticales terminen especializándose en el reconocimiento de las palabras escritas. Al explicar a los niños que las palabras están compuestas por letras que constituyen las unidades elementales del lenguaje hablado se activa con normalidad la “caja de letras” del cerebro y con ello el circuito de lectura universal del hemisferio izquierdo que es el más eficiente. Sin embargo, cuando se focaliza la atención en la palabra completa, la información satura la memoria de trabajo del niño y se activa una región del hemisferio derecho que es menos eficiente en el proceso de la lectura (Dehaene et al., 2015). En definitiva, el entrenamiento fonológico en el que se enfoca la atención en las correspondencias entre fonemas y grafemas parece ser el más adecuado para el aprendizaje del niño y le permite un desarrollo autónomo. Además, también se ha comprobado que es el más eficaz en el caso de niños disléxicos (Shaywitz et al., 2004).

Escritura en espejo

La confusión de letras en espejo (por ejemplo, “b” y “d”; ver figura 4) es una confusión que puede darse de forma transitoria en cualquier niño, no solo en los disléxicos, y está directamente relacionada con el reciclaje neuronal del que hablábamos anteriormente. Nuestro cerebro evolucionó desarrollando un sistema que nos permite identificar los rostros y saber que una persona es la misma vista desde la izquierda que desde la derecha. Y esta misma organización cerebral es la que hace que el niño vea letras simétricas y las identifique como iguales. Pero esta capacidad cerebral para el reconocimiento visual de caras no es útil en la escritura y se ha de producir el correspondiente reciclaje neuronal, o si se quiere el desaprendizaje en la “caja de letras del cerebro” (Dehaene et al., 2010). Y en este proceso, se ha comprobado que es muy útil enseñar a los niños ejercicios en los que vayan trazando las letras con los dedos, es decir, añadir a los estímulos visuales y auditivos la exploración háptica, a través de la práctica de los gestos de escritura, acelera el aprendizaje de la lectura (Fredembach et al., 2009) incidiendo en una ruta neural específica que no está asociada al reconocimiento de objetos sino a su orientación.

Figura 4

Automatismos

A través de la práctica, el niño automatizará el proceso de la lectura liberando espacio en su memoria de trabajo y mejorando así la eficiencia cerebral. No es casualidad que el grado de comprensión de los textos escritos por parte de los adolescentes dependa de la frecuencia de sus lecturas durante la infancia (Cunningham y Stanovich, 1997).

En los lectores expertos se activan de forma paralela dos rutas neurales de procesamiento complementarias: la fonológica, que nos permite pronunciar las palabras nuevas e intentar acceder al significado de las mismas, y la léxica, que es la que utilizamos para palabras conocidas y que nos permite recuperar de forma directa su significado (Dehaene et al., 2015). Pues bien, el niño, conforme va automatizando la lectura, convierte la decodificación fonológica de la palabra en letras en un proceso simultáneo, reconociendo con mayor rapidez las palabras frecuentes porque empieza a desarrollar la ruta léxica y así puede interpretar directamente el significado de las palabras escritas sin mediar los sonidos de la pronunciación. Según el niño aprende a leer dispone de más herramientas que le permiten entender el significado de las palabras.

¿Y en el caso de la dislexia?

A pesar de que algunos niños reciben una enseñanza adecuada y se esfuerzan mucho, tienen dificultades para aprender a leer. Y pueden desenvolverse muy bien en otro tipo de tareas.

En la actualidad sabemos que la dislexia tiene un origen genético, se da más en las lenguas opacas y está asociada a una mayor dificultad en la adquisición de la conciencia fonológica. Las neuroimágenes han revelado que existe una activación anormal en la corteza occipito-temporal izquierda, en el giro frontal inferior izquierdo o en el lóbulo parietal inferior, regiones cerebrales que intervienen en la descodificación fonológica, las representaciones fonológicas y la atención, respectivamente (Ylinen y Kujala, 2015). Y ello repercute, especialmente, en una organización deficiente de la “caja de letras del cerebro”. La buena noticia es que la gran mayoría de los niños disléxicos puede aprender a leer a través de una práctica intensiva en la que hemos de ser pacientes para enseñarles a orientar la atención hacia los grafemas, los fonemas y sus correspondencias.

Qué importante es la detección temprana de estos déficits para que podamos aplicar los correspondientes programas compensatorios. Y en los últimos tiempos se ha comprobado la eficacia de algunos programas informáticos presentados como videojuegos, como Graphogame, en el que los niños han de decidir con rapidez qué letras corresponden a los sonidos (ver figura 5). Unas cuentas horas repartidas en pocas semanas son suficientes para que mejore la “caja de letras del cerebro” de niños disléxicos o de aquellos con dificultades en el aprendizaje de la lectura pertenecientes a entornos desfavorecidos (Ojanen et al., 2015).

Figura 5

Principios fundamentales

La neurociencia ha identificado los circuitos cerebrales principales que sustentan el aprendizaje de la lectura y estos conocimientos, como tantas veces hemos comentado en Escuela con Cerebro, son compatibles con diversas estrategias educativas. Así, por ejemplo, aunque hemos visto la importancia de orientar la atención hacia los grafemas y los fonemas y no a la palabra de forma global, igual de útil será un enfoque que parte de la palabra para descomponerla en letras que, al revés, partir de las letras para componer las palabras.

Como consecuencia de todas sus investigaciones realizadas, Stanislas Dehaene (2015) ha establecido una serie de principios básicos, todos ellos igual de importantes, que pueden orientar la enseñanza de la lectura en la fase inicial en la que la decodificación fonológica adquiere un protagonismo fundamental. Estos principios que están referidos al español y que acompañamos con un brevísimo comentario son los siguientes:

  1. Principio de enseñanza explícita del código alfabético: el abecedario español funciona atendiendo a reglas simples que se han de conocer.
  2. Principio de progresión racional: hay ciertos grafemas que son prioritarios por lo que hay que enseñarlos antes.
  3. Principio de aprendizaje activo, que asocia lectura y escritura: aprender a componer las palabras y a escribirlas facilita el aprendizaje de la lectura en muchas etapas.
  4. Principio de transferencia de lo explícito a lo implícito: se ha de facilitar el proceso de automatización de la lectura.
  5. Principio de elección racional de los ejemplos y de los ejercicios: la elección de ejercicios y ejemplos ha de ser cuidadosa y debe tener en cuenta el nivel del alumno.
  6. Principio de compromiso activo, de atención y de disfrute: el contexto de aprendizaje ha de permitir que el niño se sienta seguro y motivado.
  7. Principio de adaptación al nivel del niño: el proceso de aprendizaje no puede ser mecánico sino que debe suministrar retos adecuados que permitan al niño sentirse protagonista y seguir avanzando.

En la enseñanza, muchas veces, las simples intuiciones no son suficientes para garantizar las buenas prácticas educativas y es por ello que los docentes deberíamos analizarlas y contrastarlas de forma rigurosa en el aula. Conocer los factores fisiológicos, socioemocionales o conductuales que inciden en el aprendizaje de la lectura facilitará el progreso de cada niño. Y eso es lo más importante.

Jesús C. Guillén

Referencias:

  1. Cunningham A. E. y Stanovich K. E. (1997): “Early reading acquisition and its relation to reading experience and ability 10 years later”. Deviant Psychology 33(6), 934-945.
  2. Dehaene, Stanislas (2015). Aprender a leer: de las ciencias cognitivas al aula. Siglo XXI Editores.
  3. Dehaene S. (2014): “Reading in the brain revised and extended: response to comments”. Mind & Language 29, 320-335.
  4. Dehaene S. (2013): “Inside the letterbox: how literacy transforms the human brain”. Cerebrum, June.
  5. Dehaene S. et al. (2015): “Illiterate to literate: behavioral and cerebral changes induced by reading acquisition”. Nature Review Neuroscience 16(4), 234-244.
  6. Dehaene S. y Cohen L. (2011): “The unique role of the visual word form area in reading”. Trends in Cognitive Sciences 15(6), 254-262.
  7. Dehaene S. et al. (2010): “Why do children make mirror errors in reading? Neural correlates of mirror invariance in the visual word form area”. Neuroimage 49(2), 1837-1848.
  8. Fredembach B. et al. (2009): “Learning of arbitrary association between visual and auditory novel stimuli in adults: the ‘bond effect’ of haptic exploration”. PLoS One 4(3): e4844.
  9. Kuhl P. K. (2010): “Brain mechanisms in early language acquisition”. Neuron Review 67, 713-727.
  10. McCandliss B. D. (2010): “Educational neuroscience: the early years”. PNAS 107(18), 8049-8050.
  11. Ojanen E. et al. (2015): “GraphoGame – a catalyst for multi-level promotion of literacy in diverse contexts”. Frontiers in Psychology 6(671), June.
  12. Shanahan T. y Lonigan C. J. (2010): “The National Early Literacy Panel: a summary of the process and the report”. Educational Researcher 39(4), 279-285.
  13. Shaywitz B. A. et al. (2004): “Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention”. Biological Psychiatry 55(9), 926-933.
  14. Tokuhama-Espinosa T. y Rivera G. M. (2013). Estudio del arte sobre conciencia fonológica. CEEC/SICA.
  15. Ylinen S. y Kujala T. (2015): “Neuroscience illuminating the influence of auditory or phonological intervention on language-related deficits”. Frontiers in Psychology 6(137), February.
Categorías:Neurodidáctica Etiquetas: , ,

El juego como instrumento de aprendizaje: aplicaciones prácticas para el cerebro en desarrollo

29 julio, 2015 9 comentarios

No hay nada que los seres humanos hagan, sepan, piensen, esperen o teman que no haya sido

ensayado, experimentado, practicado o al menos anticipado, en la etapa del juego infantil.

Heidi Britz-Crecelius

Foto 1

Es indudable el valor del juego para el aprendizaje (ver artículo anterior El juego: un mecanismo natural imprescindible para el aprendizaje) pero, si hablamos de los primeros años de vida, el juego se convierte en una necesidad vital e indispensable para el desarrollo integral del niño.

Los trabajos que han analizado las contribuciones del juego en la primera infancia permiten concluir que el juego temprano y variado contribuye positivamente a todos los aspectos del crecimiento. Estructuralmente el juego está estrechamente vinculado a las dimensiones básicas del desarrollo infantil: psicomotor, intelectual, social y afectivo-emocional. (Garaigordobil, 1990).

Sin embargo, es frecuente observar como en las escuelas infantiles a veces se intenta limitar el tiempo de juego restringiéndolo a momentos puntuales en pro de una supuesta estimulación cognitiva basada en el uso de fichas (que además de no aportar grandes beneficios, limitan la creatividad), bits de inteligencia, flashcards y otros elementos que ofrecen al niño un mundo totalmente descontextualizado y lo convierten en un mero observador pasivo. Quizás el motivo sea, como dice David Whitebread (2011), psicólogo en la Universidad de Cambridge, que el juego a menudo se percibe como un comportamiento inmaduro que no lleva a ninguna parte.

Existen investigaciones sobre los efectos de la privación de juego en las que, por razones obvias, los sujetos involucrados no eran niños. Pellis y Pellis (2009) eligieron ratas para su investigación ya que son mamíferos que aprenden rápidamente, son muy juguetonas y, al igual que ocurre con los seres humanos, presentan diferencias individuales significativas. En estas investigaciones descubrieron relaciones claras entre el nivel de comportamiento en el juego y los cambios fisiológicos en sus cerebros: las ratas lúdicas tienen niveles significativamente más elevados de neurotrofinas (BDNF) que juegan un importante papel en el desarrollo y mantenimiento de la plasticidad neural. Sin embargo, las ratas privadas de juego eran más agresivas, menos capaces de aparearse con éxito y mostraban niveles más elevados de temor e incertidumbre en entornos nuevos.

A continuación vamos a analizar las contribuciones que el juego puede ofrecer al desarrollo de aspectos tan importantes como el lenguaje, el pensamiento matemático y la creatividad en los primeros años.

Juego y desarrollo del lenguaje

Un ejemplo de juego son los sonidos, ruidos y balbuceos espontáneos que emiten los niños durante los primeros meses. En bebés de dos meses podemos observar que juegan con su lengua y reproducen sonidos inespecíficos. Sobre los cinco meses el bebé descubre que el sonido es un instrumento de feed-back a través de las respuestas que obtiene de los adultos y sus balbuceos se van haciendo cada vez más organizados, cada día le gusta más jugar con los sonidos y, alrededor de los ocho meses, empieza a ser consciente de que los emite él y juega a acompañarlos de gestos (Ferré y Ferré, 2008).

Diferentes estudios han analizado la relación entre el lenguaje hablado y los movimientos de los brazos y las manos, apoyando la hipótesis de que las acciones y los juegos manuales pueden estar relacionados con las vocalizaciones a partir de la etapa de balbuceo. Se realizó un estudio con el objetivo de verificar si la relación entre gestos y el discurso está implicada en el desarrollo del lenguaje de los niños (Bernardis y Gentilucci, 2006). Se registraron las vocalizaciones de los niños de edades comprendidas entre 11 y 13 meses durante la manipulación de objetos de diferente tamaño y se comprobó que el espectro de frecuencia de la voz aumentaba cuando los bebés manipulaban objetos grandes en comparación con las mismas actividades dirigidas a los objetos pequeños. Estos datos sugieren que las propiedades intrínsecas de un objeto que evoca comandos de interacción manual se utilizan para identificar a ese objeto  y para comunicarse.

Utilizando neuroimágenes funcionales, se ha comprobado que el sistema de control tanto de la voz como de los gestos se encuentra en el área de Broca (Gentilucci y Dalla Volta, 2008). Quizás estos resultados podrían apoyar la efectividad de los juegos de rimas y movimiento propuestos por el pensador austríaco Rudolf Steiner para el desarrollo del lenguaje.

En niños algo más mayores observamos que el juego simbólico también aporta beneficios al desarrollo lingüístico. En investigaciones estándar sobre el papel del juego en la comprensión del lenguaje, un grupo de niños escucha una historia y luego reproduce las escenas mientras que los integrantes del grupo de control se involucran solo en la discusión de la historia o en actividades no relacionadas. La conclusión de estos estudios es que la historia es más comprensible y fácil de recordar para los niños que escenifican la historia que para los que no porque mejoran su capacidad para verbalizarla (Hughes, 2010).

Juego y desarrollo del pensamiento matemático

¿Qué son las matemáticas? ¿Una ciencia? ¿Un juego? ¿Un arte? ¿Una actividad de hipótesis, experimentos y datos? ¿Un juego que se juega con símbolos, lleno de tácticas y estrategias? ¿O una materia de percepción, de visión clara y de nuevos caminos que no eran considerados previamente, tal como plantea Wells (1995)?

El juego y la resolución de problemas están entrelazados en la primera infancia. Diferentes  estudios documentan el valor del juego en el desarrollo del pensamiento matemático en los primeros años. En uno de esos estudios  (Ginsburg y Seo, 1999) se  grabó la actividad de 90 niños con edades entre los 3 y los 5 años durante el juego libre. Cada película duró 15 minutos. A continuación, se analizó el contenido y los investigadores encontraron que, independientemente de la clase social de los niños, cerca de la mitad de los escenarios de juego contenía la actividad matemática, incluidos los patrones y formas, la magnitud de diferentes objetos, y el número o cantidad. Estos temas no fueron asignados a la tarea sino que surgieron espontáneamente.

Si hablamos de niños más pequeños, el primer tipo de juego en los bebés es el juego sensorio-motriz que le permite el descubrimiento de su cuerpo y sus posibilidades de movimiento. Según Ferré y Ferré (2008) “la reversibilidad del pensamiento, que tan importante es para la comprensión de las matemáticas, tiene sus raíces más primitivas en la reversibilidad de los circuitos motrices y corporo-espaciales” Un ejemplo de circuito motor reversible es el volteo de boca arriba a boca abajo y viceversa, uno de los primeros hitos en el desarrollo de los bebés.

Algunos investigadores han demostrado que los bebés poseen conceptos matemáticos básicos (en concreto, el llamado sentido numérico innato). Starkey y Cooper (1980) encontraron en un experimento de habituación que los niños de 5 meses discriminaban entre 2 y 3 puntos, pero en un segundo experimento también hallaron que dicha discriminación no se producía ante 4 y 6 puntos. En esta misma línea, Cooper (1984) mostró que los niños con edades comprendidas entre los 12 y 18 meses eran capaces de discernir entre las cantidades de dos conjuntos, pero incapaces de establecer la distinción “más que/menos que”. Años después Starkey, junto a Spelke y Gelman (1990), realizaron un experimento con bebés de 6 meses a los que expusieron imágenes auditivo-visuales, comprobando que miraban más tiempo la exposición visual que se emparejaba con el número de sonidos que habían escuchado.

A través del juego, los niños pueden realizar acciones como comparar, establecer relaciones, anticipar resultados, ensayar soluciones…En este sentido nos parecen especialmente interesantes para las aulas de 1er ciclo de infantil las propuestas de juego ideadas por Elinor Goldschmied y Sonia Jackson (2000). Estas propuestas tienen una base manipulativa y experimental de los objetos a partir de la manera natural que tienen los niños de conocer, lo cual les facilita ir activando los sentidos e ir desarrollando el pensamiento logico-matemático:

  • El cesto de los tesoros: es adecuado para niños menores de un año y se puede iniciar en el momento en que el bebé pueda permanecer sentado correctamente pero todavía no es capaz de desplazarse. Consiste en poner al alcance del niño un recipiente lleno de objetos (redondo, de base plana, con un diámetro de unos 35 cm y una altura de 8 a 12 cm de forma que el niño pueda apoyarse sin volcarlo). Los objetos deben ser variados y de uso común, evitando los juguetes y los objetos de plástico. Se utilizan objetos naturales (piñas, corcho, conchas, plumas, etc.), objetos de madera, metálicos, de cuero, tela, goma, de cartón, todo ello de diferentes formas y tamaños. Es una actividad libre, de exploración, concentración y atención que favorece la curiosidad innata por descubrir las cualidades de las cosas. El juego finaliza en el momento que el bebé pierde el interés.
  • El juego heurístico: es una continuación del anterior pensada para niños de entre 12 y 24 meses que ya han desarrollado la capacidad de moverse de manera autónoma y han perfeccionado la coordinación óculo-manual. Se utilizan objetos similares a los descritos anteriormente y se añaden dos nuevos: contenedores y bolsas. Las principales diferencias entre ambos juegos es la intencionalidad de los niños y que deben participar en la recogida del material realizando clasificaciones.

Juego y desarrollo de la creatividad

El hecho de dejar este aspecto para el final no significa que sea menos importante que los anteriores, más bien al contrario, para nosotros es sin duda una de las capacidades más importantes que debemos potenciar en nuestros alumnos. El hecho de jugar es en sí mismo un proceso tremendamente creativo que fomenta la imaginación, el pensamiento original, la resolución de problemas, el pensamiento crítico y la autorregulación.

A veces tendemos a confundir la creatividad con la creación artística, olvidando que ésta última es tan solo una de las múltiples representaciones de la primera. Cuando proponemos una actividad de creación artística en estas edades no podemos ignorar que lo menos importante es el producto: el niño sólo está jugando, pero al mismo tiempo que está usando sus manos para manipular, en su cerebro se está desarrollando un proceso de madurez simultáneo que no debe ser presionado (Healy, 2011). Sin olvidar que el proceso creativo depende de la capacidad cerebral de integrar la información entre ambos hemisferios (Sherman, 2013) que están en continua comunicación a través del cuerpo calloso.

En el proceso de desarrollo de la creatividad, lo mejor que podemos hacer es que florezca por sí sola. Para ello el juego debe ser espontáneo, flexible, impredecible, imaginativo y no directivo. Cuando hay instrucciones el proceso es menos creativo porque se activa la corteza prefrontal izquierda (Saggar et al., 2015), que interviene en las funciones ejecutivas que requieren de atención y evaluación.

Las personas grandes me aconsejaron que dejara a un lado los dibujos de serpientes boas abiertas o cerradas, y que me interesara un poco más en la geografía, la historia, el cálculo y la gramática. Así fue como, a la edad de seis  años,  abandoné  una  magnífica  carrera  de  pintor  […]. Las  personas grandes nunca comprenden nada por sí solas  y  es muy aburrido para los niños tener que darles una y otra vez explicaciones. El Principito, Saint Exupéry, 1951.

Concluimos con un video que recoge momentos de trabajo en las aulas de 0 a 3 años porque no debemos olvidar que, cuando hablamos de niños, el juego es un trabajo muy serio. ¡Silencio, se juega!

Milagros Valiente Martínez

.

Referencias:

  1. Bernardis, P. and Gentilucci, M. (2006): “Speech and gesture share the same communication system”. Neuropsychologia 44, 178-190.
  1. Cooper, R.G. (1984): “Early number development: discovering number space with addition and subtraction”. In C. Sophian (Ed.), Origins of Cognitive Skills (pp. 157-192). Hillsdale, NJ: Erlbaum.
  1. Ferré, J. y Ferré, M. (2008). Cer0atr3s: desarrollo neuro-senso-psicomotriz de los 3 primeros años de vida. Ediciones Lebon
  1. Garaigordobil, M. (1990). Juego y desarrollo infantil. Madrid. SecoOlea.
  1. Gentilucci, M., Dalla Volta R. (2008): “Spoken language and arm gesture are controlled by the same motor control system”. Q J Exp Psychol 61, 944-957.
  1. Ginsburg, P. and Seo, K (1999). Mathematics in children´s thinking. Mathematical Thinking and Learning. Vol. 1, Issue 2, pp 113-129
  1. Goldschmied, E. y Jackson, S. (2000). La educación infantil de 0 a 3 años. Ed. Morata.
  1. Healy, J.M. (2011). Different learners: identifying, preventing, and treating your child’s learning problems. Simons & Schuster Ed.
  1. Hughes F. P. (2010): “Language, play and language development”:

http://www.education.com/reference/article/language-play-development/

  1. Pellis, S. and Pellis, V. (2009). The playful brain: venturing to the limits of neuroscience. Oxford, UK: One World Publications.
  1. Saggar, M. et al. (2015): “Pictionary-based fMRI paradigm to study the neural correlates of spontaneous improvisation and figural creativity”. Scientific Reports 5 (may).
  1. Sherman C. (2013): “Right brain – left brain – a primer”. The Dana Foundation.

http://dana.org/Briefing_Papers/Right_Brain-Left_Brain%E2%80%93A_Primer/

  1. Starkey, P., & Cooper, R. G. (1980): “Perception of numbers by human infants”. Science 210, 1033-1035.
  1. Starkey, P., Spelke, E. S., y Gelman, R. (1990). Numerical abstraction by human infants. Cognition, 36, 97-128.
  1. Wells, D. (1995): “Investigations and the learning of the mathematics”. Mathematics Teaching 150, 36-40.
  1. Whitebread, D. (2011). Developmental Psychology and Early Childhood Education. London: Sage.

Neuroeducación y modelos de crianza

25 junio, 2015 13 comentarios

Una palabra, lanzada al azar en la mente, produce ondas superficiales y profundas, provoca una serie infinita de reacciones en cadena, implicando en su caída sonidos e imágenes, analogías y recuerdos, significados y sueños, en un movimiento que afecta a la experiencia y a la memoria, a la fantasía y al inconsciente, complicándolo el hecho de que la misma mente no asiste pasiva a la representación sino que interviene continuamente para aceptar y rechazar; ligar y censurar; construir y destruir.    

                 Gianni Rodari

A pesar de que hace tiempo existía la firme creencia de que la plasticidad neuronal era un fenómeno casi exclusivo de los primeros meses de vida, afortunadamente la neurociencia ha demostrado que no es una característica exclusiva de la primera infancia sino que, con mayor o menor intensidad y en unas regiones más que en otras, los cambios en el cableado del cerebro se pueden producir durante toda nuestra vida (ver artículo anterior sobre neuroplasticidad).

Estamos de acuerdo con John T. Bruer (2000) en el aspecto de que no debemos mitificar esos tres primeros años de vida, pero es indudable que se trata de un período especialmente sensible en el que el cerebro evoluciona de una manera espectacular (ver figura 1).

Figura 1

¿Esto significa que debemos someter a los bebés a rígidos planes de estimulación o, más bien, sobre-estimulación? Rotundamente no, entonces ¿qué podemos ofrecer los profesionales de la etapa de 0 a 3 años a nuestros alumnos?

En este artículo vamos a analizar algunos de los cuidados, atenciones e intervenciones con bebés y cómo podemos optimizarlos teniendo en cuenta las aportaciones de la neurociencia sobre este período del desarrollo.

Imitando la lactancia materna

Evidentemente son indiscutibles los innumerables beneficios de la lactancia materna frente a la lactancia artificial, tanto por la composición de la leche (la secreción y las características químicas de la leche materna se ajustan a la madurez del bebé y a sus necesidades a través de la información que la madre recibe del ritmo y la intensidad de succión), como por la relación privilegiada madre-hijo que se establece durante este período. A pesar de que la leche artificial siempre será tan sólo una imitación de la leche materna, y de que las tetinas, por muy ergonómicas que sean, nunca podrán ser iguales al pecho materno, sí podemos seguir unas sencillas pautas para que el bebé que no es amamantado pueda beneficiarse de una estimulación similar a nivel neurológico a la proporcionada por la lactancia materna:

  • Activar el reflejo de búsqueda o de los puntos cardinales: el bebé voltea la cabeza cuando se le toca la mejilla y comienza a succionar cuando el pezón toca sus labios. La toma de biberón debería comenzar acariciando suavemente la mejilla del bebé para que gire su cabeza y rozando sus labios para que inicie el movimiento de succión.
  • Estimulación simétrica: cuando un bebé se alimenta mediante lactancia materna está recibiendo una estimulación simétrica ya que va cambiando su posición al alternar un pecho con el otro. Uno de los objetivos prioritarios de la organización biomecánica y psicomotriz del bebé es desarrollar correctamente la simetría corporal. Para imitar esta estimulación con los bebés que toman biberón es tan sencillo como calcular el tiempo total de la toma, dividirlo y cambiar de posición al bebé para que pase aproximadamente la mitad del tiempo en cada postura. Al principio puede resultar difícil acostumbrarse a sujetar al bebé con un brazo distinto al que utilizamos habitualmente pero es una cuestión de práctica.
  • Vinculación afectiva: el contacto “piel con piel” y la posición “cara a cara” que se adopta entre la madre y el bebé, desempeña un papel muy importante en el proceso de humanización y en la construcción de las raíces afectivas de la identidad. Sabemos que el contacto piel con piel favorece las conexiones neuronales (Gerhardt, 2008) por lo que, cuando administramos un biberón, debemos dejar que la cara del bebé se apoye sobre la piel de nuestro brazo desnudo o de nuestro pecho, buscando una posición cara a cara que facilite la comunicación con el niño.

 Harry Harlow, uno de los investigadores del contacto físico entre los humanos, realizó un experimento con primates para demostrar la importancia del apego. Aunque el factor biológico como es la alimentación es fundamental en la crianza de un bebé, Harlow demostró con su experimento que el apego sería el mayor de los factores en la formación de un individuo (Harlow, 1959). Para ello, fabricó una “madre adoptiva” con el cuerpo de alambre que suministraba leche a una cría de chimpancé, y otra “madre adoptiva” hecha con agradables ropajes. Ésta última no lo alimentaba, pero le proporcionaba una placentera sensación táctil. La reacción del chimpancé no se hizo esperar, se alimentaba de la madre hecha con alambres, pero en cuanto terminaba de comer acudía a la madre vestida. Permaneció al lado de ella, durante 18 horas, pues ésta le proporcionaba calidez y suavidad con su contacto. Estos datos, sin entrar a valorar la dudosa ética del trato al que fueron sometidos los primates, nos indican que la experiencia sensorial a través del contacto físico es fundamental dentro del desarrollo humano.

Parques, andadores, hamaquitas…esos grandes enemigos del desarrollo infantil

Si entendemos que lo que nos diferencia de los seres vivos que carecen de cerebro es nuestra capacidad de movimiento ¿cuáles son los beneficios que pueden aportar a un niño en desarrollo este tipo de artilugios que lo mantiene inmóvil o que, en el mejor de los casos, limita la libertad de sus movimientos? Por más que lo pensamos nos reconocemos incapaces de encontrar ni una sola respuesta válida. Sin embargo, sí se nos ocurren varios motivos por los que al adulto/educador/cuidador le pueden resultar atractivos. Desgraciadamente nos resulta muy fácil imaginar cómo la zona de confort de un educador permanece inalterable teniendo a varios bebés literalmente encajados y controlados (por supuesto con su correspondiente arnés, por aquello de la seguridad) en esas mesas semicirculares con asientos incorporados que se han puesto tan de moda y que reciben, a nuestro juicio, el desafortunado nombre de mesas de estimulación.

 Cualquier forma de coartar la libertad de movimiento en los bebés está limitando su interacción con el medio externo. El desarrollo postural, motriz e incluso el sensorial están íntimamente vinculados al movimiento: donde hay movimiento hay percepción y, por lo tanto, aprendizaje. Los bebés que se pasan el día sentados y pasivos son candidatos a presentar alteraciones funcionales de la visión y del sentido de ubicación espacial  (Ferré y Ferré, 2008).

A partir de los tres meses de vida debemos colocar al bebé en el suelo, proporcionándole experiencias de estimulación bilaterales y simétricas, con actividades y juegos en la línea media del cuerpo y del campo perceptivo. El trabajo en la línea media le permite, entre otras cosas, explorar sus manos, desarrollar la coordinación bimanual y seguir con la vista un objeto que se desplaza horizontalmente en un espacio de unos 180º.

Los niños que tienen la oportunidad de vivir suficientes experiencias de suelo aprenderán a voltearse sobre el plano de apoyo y conquistarán la postura del boca abajo (tendido prono), desde ahí descubrirán todos los movimientos de desplazamiento: reptado circular, lineal y contralateral, el cual evolucionará hacia el gateo contralateral, la sedestación y, finalmente, la conquista de la bipedestación. Estos hitos de desarrollo y sus implicaciones a nivel neurológico merecen un análisis mucho más exhaustivo, con lo cual no nos detendremos más en este punto.

El calzado infantil: otro enemigo para el desarrollo

 Esos zapatos diminutos que pueden parecer irresistibles pierden todo su encanto si tenemos en cuenta que el estímulo sensorial del bebé a través de los pies descalzos es un factor de maduración, de desarrollo propioceptivo y de desarrollo intelectual. (Gentil, 2007).

 Los pies del recién nacido tienen una sensibilidad táctil exteroceptiva mucho más fina que la de la mano y se mantiene así hasta los 8 ó 9 meses. Durante los primeros meses utiliza los pies para informarse del mundo exterior, toca con ellos todo lo que tiene a su alcance, los manipula con sus manos y los lleva a la boca donde hay una gran cantidad de terminaciones sensitivas. A partir de esta edad el pie de forma gradual pierde este tipo de sensibilidad y se inicia otra más profunda, la sensibilidad propioceptiva. Antes de que el niño comience a andar necesita la información que recibe de la planta del pie que cuenta con dos tipos de receptores: los somatoestésicos o profundos y los receptores sensitivos superficiales.

El calzado no sólo no es necesario para aprender a caminar sino que es un error que el niño lo haga con zapatos ya que el pié debería estar en contacto con superficies irregulares con el objetivo de estimular las sensaciones cinestésicas y los reflejos posturales. El calzado para gateantes tampoco tiene justificación ya que sabemos que el roce del dedo pulgar del pié con el suelo activa el reflejo de gateo.

¿Ayúdale a caminar?

¿Cuántas veces hemos visto a un adulto sujetando de las dos manos a un niño para que “camine”? Es una imagen bastante frecuente si damos un paseo por el parque pero, desafortunadamente, también es una imagen habitual en los centros de educación infantil donde se nos supone profesionales y además se nos presuponen unos conocimientos sobre el desarrollo. ¿Por qué hay tanta prisa para acelerar de forma antinatural un proceso que estará repitiendo diariamente el resto de su vida?

Andar no significa mantener un equilibrio rudimentario sobre las dos piernas. Andar es tener dominio del equilibrio bipedestante, un buen nivel de integración de la información que procede de los dos laberintos, ser capaz de desplazarse con soltura y explorar el espacio con un sistema visual y auditivo que proporciona una imagen tridimensional, aunque un tanto inmadura, del espacio que le rodea. Andar es una capacidad multifactorial que debe ser fruto de la maduración de todos los mecanismos que intervienen (Ferré y Ferré, 2008).

El niño no debe empezar a caminar sin un sistema neurosensorial suficientemente preparado. Cualquier intervención que tenga como objetivo acelerar el desarrollo a costa de acortar los períodos intermedios, además de carecer de utilidad objetivamente, puede provocar riesgos en los procesos posteriores. Si un niño no es capaz de dominar las etapas precedentes, difícilmente va a poder asentar sobre ellas los nuevos conocimientos y habilidades. Al existir una falta de maduración, la calidad de la ejecución es peor y el niño se termina adaptando a posturas y actividades que no controla, con lo cual tampoco dispone de medios para solventar por sí mismo sus carencias.

Llorar o no llorar, atender o ignorar

La respuesta a esta cuestión, al menos para nosotros, es tan obvia que incluso nos parece triste que se siga cuestionando y tener que seguir justificando nuestra postura. Vamos a intentar dejar a un lado subjetividades y nos centraremos en analizar objetivamente las repercusiones neurológicas de no atender el llanto de un bebé.

Los bebés nacen con un cerebro inmaduro. El dejar llorar a los bebes puede impedir el correcto desarrollo de diferentes zonas importantes sobre todo la zona que se encarga de la parte emocional.

Entre los muchos sistemas que se desarrollan desde el nacimiento hasta los dos años están los que utilizamos para gestionar nuestra vida emocional, en concreto la respuesta al estrés se forma durante los 3 primeros meses de vida. El llanto no atendido en un bebé genera una situación estresante que provoca un aumento en los niveles de cortisol. El exceso de cortisol activa la amígdala del cerebro, órgano encargado del control de las emociones, emitiendo una señal de alarma de que algo no va bien. Si un niño crece con una cantidad de cortisol constantemente elevada, porque le dejan llorar mucho o porque se estresa con facilidad, la amígdala se acaba acostumbrando a ese cortisol sobrante y deja de emitir la señal de alarma. Al no haber alarma el cerebro no ofrece una respuesta de gestión a ese estrés y el niño acaba por no saber manejar esas situaciones que le generan ansiedad.

Una exposición frecuente y prolongada a elevados niveles de cortisol durante los primeros meses de vida puede afectar al desarrollo cerebral de diferentes áreas relacionadas con la memoria, emociones negativas y regulación de la atención. Las primeras experiencias con el cortisol afectaran al comportamiento emocional y a la reactividad ante el estrés, llegando a producir alteraciones en los recaptadores de la serotonina. René Hen junto a otros investigadores de la Universidad de Columbia, concluyeron que el desarrollo del cerebro durante los últimos meses de embarazo y en los primeros meses de vida, es esencial para la formación de los receptores de serotonina y, por ende, el surgimiento de la ansiedad en la adultez. Además, otro importante descubrimiento apunta que los receptores sólo funcionan si son desactivados en la corteza cerebral y en el hipocampo. Los ratones cuyos receptores en la parte posterior del cerebro eran desactivados, no mostraban ningún tipo de conducta ansiolítica cuando eran adultos. Por lo tanto, se ha demostrado que el receptor para la serotonina 1A, es importante en el control de la ansiedad en la adultez. Si los receptores de este tipo, localizados en el hipocampo y en la corteza cerebral, sufren daños durante la infancia, el adulto sufrirá de ansiedad (Gross et al., 2002).

 En otro estudio, el Dr. Teicher y sus colaboradores (2003) plantearon como hipótesis inicial que el estrés temprano era un agente tóxico que interfería con la progresión ordenada del desarrollo cerebral. No obstante, el autor cuestiona esta premisa, dado que el cerebro humano evolucionó para ser moldeado por la experiencia pero las dificultades tempranas eran comunes durante la vida de nuestros antepasados. Como alternativa se ha sugerido que el estrés temprano genera efectos moleculares y neurobiológicos que alteran el desarrollo neural en una forma adaptativa que prepara al cerebro adulto para sobrevivir y reproducirse en un mundo peligroso. Las condiciones de crianza adecuadas, concluye el autor, sin un grado intenso de estrés temprano, permiten el desarrollo cerebral en una forma menos agresiva, más estable desde la perspectiva emocional, con mayor integración social. Este proceso mejora la capacidad para construir estructuras interpersonales más complejas y permite al ser humano desarrollar al máximo su potencial creativo.

Pero entonces ¿es necesario impedir siempre que un niño llore? No exactamente. Curiosamente nos encontramos con el hecho de que, a los mismos adultos que consideran oportuno dejar llorar al bebé en su cuna, les resulta molesto que el niño exprese sus sentimientos llorando cuando es algo mayor. ¿Cuántas veces escuchamos o decimos “no llores, no pasa nada”? En esas ocasiones deberíamos acompañar al niño en su llanto pero no suprimirlo.

También la composición de las lágrimas ha dado lugar a diferentes estudios, a día de hoy sabemos que las lágrimas emocionales, por ejemplo, contienen más hormonas y leucina encefalina, un analgésico natural que se libera cuando el cuerpo está bajo estrés. Estudios como el de William H. Frey, bioquímico de la Universidad de Minnesotta, postulan que las personas se sienten mejor después de llorar ya que las lágrimas contienen la hormona adrenocorticotrópica, una hormona asociada al estrés, sí añadimos que durante el llanto aumentamos la secreción mucosa, esto apoya la teoría de que el llanto es un mecanismo desarrollado para disponer de esta hormona cuando el nivel de estrés es muy alto (Frey & Langseth, 1985).

 Por otro lado, investigaciones como la llevada a cabo por Michael Trimble (2012) del Instituto de Neurología en Londres, defienden que el llanto podía haber sido una de las primeras formas de comunicación del hombre, anterior al lenguaje. Sabemos que las emociones humanas surgen a partir de una red de regiones cerebrales interconectadas, como el sistema límbico que está asociado con el sistema nervioso autónomo, lo que llevaría a que nuestros sentimientos tuvieran una repercusión en nuestras respuestas corpóreas, ya que en el llanto no solo intervienen las lágrimas sino que también se acelera  el ritmo cardiaco, la respiración e incluso las cuerdas vocales, y tras el llanto solemos experimentar una sensación de alivio. Llorar, por lo tanto, es una característica humana, y aunque aún no sepamos con exactitud  las razones y el origen del llanto si sabemos que produce efectos beneficiosos como la reducción de estrés y la claridad de pensamientos.

 Se han identificado distintos tipos de lágrimas, según el motivo por el que se producen y el área del cerebro que se active con cada estímulo.

Para mostrarlo artísticamente, la fotógrafa Rose-Lynn Fisher puso en marcha un proyecto con el nombre “La topografía de las lágrimas”. El proyecto consistió en tomar muestras de lágrimas generadas en situaciones diferentes para después conocer qué diferencias existían entre ellas a través de un microscopio electrónico (ver figura 2). La conclusión a la que llegó es que existen tres tipos de lágrimas: las causadas por emociones extremas como la alegría, la tristeza, la euforia y el rechazo, entre otros, las basales, que son generadas para mantener la córnea lubricada (de 0,75 a 1,1 gramos cada día) y las reflejas, generadas por la respuesta a un agente externo.

Figura 2

 Para concluir nos gustaría plantear una reflexión. A pesar de que hemos intentado documentar nuestras opiniones con datos aportados por la neurociencia, estamos convencidos de que, tras todo esto, hay un transfondo de “sentido común” que deberíamos aplicar no sólo los que trabajamos en las etapas iniciales del sistema educativo sino todos los que, de una u otra forma, estamos implicados en la tarea de cambiar la educación. A continuación queremos compartir un vídeo que nada tiene que ver con la neurología pero que puede provocar ese “click” tan necesario para cambiar la forma de ver a un niño.

Milagros Valiente Martínez

.

Referencias:

  1. Bruer, J. T. (2000). El mito de los tres primeros años: una nueva visión del desarrollo inicial del cerebro y del aprendizaje a lo largo de la vida. Paidos Ibérica.
  2. Corel, JL. (1975). The postnatal development of the human cerebral cortex. Harvard University Press.
  3. Ferré, J. y Ferré, M. (2008). Cer0atr3s: desarrollo neuro-senso-psicomotriz de los 3 primeros años de vida. Ediciones Lebon.
  4. Frey, W., Langseth, M (1985). Crying: the mistery of tears. Winston Press.
  5. Gentil García, I. (2007): “Podología preventiva: niños descalzos igual a niños más inteligentes”. Revista Internacional de Ciencias Podológicas, Vol. 1, Núm. 1, 27-34.
  6. Gerhardt, S. (2008). El amor maternal: la influencia del afecto en el desarrollo mental y emocional del bebé. Albesa.
  7. Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R. (2002): “Serotonin 1A receptor acts during development to establish normal anxiety-like behaviour in the adult”. Nature 416, 396-400.
  8. Harlow, H. F. (1959): “Love in Infant Monkeys”. Scientific American 200 (June), 68, 70, 72-74.
  9. Teicher, M., Andersen, S., Polcari, A., Anderson, C., Navalta, C., Kim, D. (2003): “The Neurobilogical consequences of early stress and childhood maltreatment”. Neuroscience & Biobehavioral Reviews 27, 33-44.
  10. Trimble, M. (2012). Why humans like to cry: the evolutionary origins of tragedy. Oxford University Press.

Para saber más:

Blakemore S., Frith, U. (2011). Cómo aprende el cerebro: las claves para la educación. Ariel.

Falk, J. (ed.) (2008). Lóczy, educación infantil. Octaedro.

González, C. (2006). Bésame mucho: Cómo criar a tus hijos con amor. Temas de hoy.