Archivo

Posts Tagged ‘Lectura’

Neuroeducación y lectura

Leer significa activar un amplio arco cognitivo que involucra la curiosidad, la atención, el aprendizaje y la memoria, la emoción, la consciencia y el conocimiento. Es quizás el mejor medio para construir un puente definido entre humanidades y ciencia.

Francisco Mora

Aprovechamos la publicación del último libro de Francisco Mora (Neuroeducación y lectura. De la emoción a la comprensión de las palabras), cuya lectura recomendamos, por supuesto, para analizar algunas de las ideas que expone el gran neurocientífico español, muchas de las cuales tienen grandes implicaciones educativas. Aprovechamos también para complementar esa información, y la que suministramos en un artículo anterior (El cerebro lector: algunas ideas clave), con algunos estudios relevantes sobre la temática.

Genética vs cultura

A diferencia del lenguaje oral, la lectura no tiene una base genética y requiere un aprendizaje explícito en el que no existen periodos sensibles. En condiciones normales crecemos en un entorno social que nos permite desarrollar el habla, ya que nuestro cerebro está preparado para ello fruto de un proceso evolutivo continuo de más de dos millones de años o, si se quiere, nuestro cerebro dispone de los circuitos neuronales del lenguaje que nos posibilitarán hablar de forma natural al crecer en un entorno social, salvo disfunciones concretas. Sin embargo, leer es un invento cultural que nació hace unos 6000 años, un periodo de tiempo muy pequeño para que los genes hayan incorporado la lectura en su estructura codificada. Todo ello conlleva que leer requiere un aprendizaje explícito que puede darse en cualquier etapa de la vida, a partir de los 5-6 años, en promedio, aunque ese aprendizaje se optimizará en los primeros años de la infancia (ver figura 1; Dehaene et al., 2015) en los que el cerebro muestra una mayor plasticidad para reciclar circuitos, especialmente los de la corteza visual, y reorientarlos hacia otra actividad, tal como explicaremos luego. El lenguaje oral depende casi exclusivamente de los mecanismos auditivos, mientras que la lectura depende de la visión y la audición (también del tacto en personas ciegas). En la práctica, la alfabetización crea una nueva puerta de entrada visual hacia los circuitos del lenguaje.

Figura 1. La activación de la caja de letras del cerebro depende del número de palabras leídas por minuto. Es mayor en personas que aprendieron a leer en la infancia, menor en las que aprendieron en la adultez y casi nula en aquellas que no saben leer (Dehaene et al., 2015).

Desde la perspectiva neuroeducativa, hay dos cuestiones especialmente relevantes. La primera hace referencia a que cada cerebro se desarrolla de forma específica, por lo que las rutas neurales que intervienen en el aprendizaje de la lectura madurarán de forma diferente para cada niña o niño. Ello nos lleva a una de las cuestiones educativas más trascendentes: la atención a las necesidades específicas de cada estudiante. La segunda está vinculada al papel que desempeña la emoción en los procesos cognitivos. Hoy ya sabemos que no constituyen dos mundos mentales independientes. El inicio de la lectura en la infancia tiene que ser un proceso placentero. Lo sabemos, cuando estamos motivados aprendemos más y mejor. Ello requiere tener en cuenta los intereses de cada niña o niño para que la lectura sea un descubrimiento feliz. Como analizaremos a continuación, si quieres que tu alumnado o tus hijos se eduquen como lectores, deberán decodificar con facilidad, comprender lo que leen y estar motivados para la lectura.

Leyendo en el cerebro

La aparición de la lectura fue posible debido a la existencia previa de los sustratos neurales del lenguaje, que en la mayoría de las personas se localizan en el hemisferio cerebral izquierdo. Aunque sabemos que el hemisferio derecho también participa en cuestiones lingüísticas como en el caso de la prosodia (la melodía de la frase) o en la interpretación de metáforas, inferencias…, por ejemplo. Los estudios con neuroimágenes han identificado tres sistemas neuronales imprescindibles para la lectura (ver Banich y Compton, 2018), interrelacionados entre ellos, que conectan las áreas visuales con las del lenguaje (ver figura 2):

Figura 2. Regiones cerebrales que intervienen en las rutas fonológicas y léxicas que nos permiten leer. La región crítica que interviene en ambas es el área visual de formación de palabras (visual word form area) o “caja de letras del cerebro” (Banich y Compton, 2018).

1. Sistema ventral

Está ubicado en la corteza occipital y temporal. Es el sistema de procesamiento visual que permite escanear la palabra, letra a letra (p-e-r-r-o) gracias al área visual de formación de palabras o “caja de letras del cerebro” (en inglés, VWFA, visual word form area), una especie de nodo crítico alrededor del giro fusiforme que conecta de forma bidireccional las áreas visuales del cerebro con las áreas del lenguaje y que el correspondiente aprendizaje permitirá traducir la información visual de las palabras en sonidos y significados. Las evidencias demuestran que esta área visual está especializada en el reconocimiento de objetos y rostros, pero la lectura reciclará parte de esta región para identificar las letras (tanto su tamaño, forma o posición), desplazándose la identificación de rostros y objetos a una región homóloga del hemisferio derecho (la especialización de la corteza visual es lenta y a los 6 o 7 años todavía no se ha completado; Dehaene-Lambertz et al., 2018). Esta lateralización no se da cuando aparecen las dificultades lectoras. La actividad reducida de este sistema ventral en el hemisferio izquierdo frente a palabras escritas es un marcador universal de las dificultades de lectura en idiomas tan dispares como el español, inglés, hebreo o chino (Rueckl et al., 2015; ver figura 3).

Figura 3.  Convergencia de redes neurales ante palabras escritas (en azul) y habladas (en verde) en las distintas lenguas evaluadas (Rueckl et al., 2015).

Por cierto, en el caso de lectores ciegos que aprendieron braille, la caja de letras del cerebro está situada casi en el mismo lugar que en el resto de lectores.

Por otra parte, una vez conformadas las palabras en la caja de letras del cerebro pasan al sistema límbico (a través de la amígdala) adquiriendo un significado emocional inconsciente antes de su procesamiento semántico en los sistemas dorsal y anterior. Se han identificado rutas neurales concretas que conectan el sistema límbico con las regiones ventrales del lóbulo temporal y el frontal (fascículo uncinado).

2. Sistema dorsal (territorio de Wernicke)

Forma parte de los lóbulos parietal (giro angular y giro supramarginal) y temporal (área de Wernicke). En este sistema se da la decodificación grafema-fonema, es decir, es un sistema de procesamiento auditivo que nos permitirá pronunciar la palabra, letra a letra (p-e-rr-o), identificando los sonidos correspondientes. Y parece que este sistema dorsal no solo participa en la conversión de los aspectos ortográficos en sus formas fonológicas, sino que también lo hace en la semántica o significado de las palabras.

3. Sistema anterior (territorio de Broca)

Este sistema está localizado en el lóbulo frontal, permitiendo la integración de la información para producir significado (el perro es un animal que ladra). Las redes neuronales de este territorio (giro frontal inferior y área de Broca) son claves en la construcción del lenguaje (sintaxis) y en la elaboración del vocabulario (léxico). Envían la información auditiva de las palabras generada en el sistema dorsal a las áreas motoras frontales, en donde se elaboran los programas motores que se remitirán a las cuerdas vocales o a los músculos de los dedos para facilitar el habla o la escritura, respectivamente.

Los territorios de Wernicke y Broca están conectados de forma constante y bidireccional a través del fascículo arqueado, un enorme cordón de fibras nerviosas que en la inmensa mayoría de las personas es mucho más grueso en el hemisferio izquierdo, que se ocupa del lenguaje. Esta asimetría solo existe en la especie humana.

Actualmente, las técnicas de magnetoencefalografía nos permiten seguir el proceso de activación cerebral y con ellas se pueden realizar grabaciones a cámara lenta que reconstruyen la sucesión de regiones que recorren, por ejemplo, las palabras al leerlas (ver video; Marinkovic et al., 2003).

Tal como se observa en el video, la activación cerebral se inicia en el lóbulo occipital (en torno a los 100 ms), continúa en la “caja de letras del cerebro” (en torno a 170 ms) y luego se da una explosión de actividad en regiones temporales y frontales del hemisferio izquierdo que conforman los territorios de Wernicke y Broca. Finalmente, se observa un regreso de actividad a las zonas visuales. Todo ello demuestra que la rapidez con la que nuestro cerebro identifica el significado de las palabras es un proceso bidireccional en el que cooperan las áreas de visión del cerebro con las redes del lenguaje hablado. Relacionado con esto último, se han identificado dos rutas paralelas que utilizamos de forma simultánea que nos permiten acceder al significado de las palabras cuando hemos aprendido a leer y ya automatizamos el proceso. Por un lado, existe una ruta fonológica (dorsal) que permite identificar palabras poco frecuentes a través de la pronunciación y, por otro, una ruta léxica (ventral) que facilita identificar palabras conocidas accediendo directamente a su significado (ver figura 2).

Fases en el aprendizaje de la lectura

Aprender a leer conlleva un proceso de aprendizaje continuo que partirá del análisis de la letra y llegará a la interpretación del significado de frases y textos complejos. Los estudios con neuroimágenes han identificado grandes transformaciones en los sistemas neurales que posibilitan la lectura, especialmente en circuitos del área de la caja de letras del cerebro. En concreto, se distinguen tres etapas importantes (no separadas de forma estricta) en la adquisición de la lectura que comenzarían en torno a los 5 o 6 años. Antes, las niñas y los niños adquieren un gran conocimiento fonológico, consiguen un vocabulario de varios miles de palabras y dominan las reglas gramaticales básicas de sus lenguas. Las fases principales que describen la curva de aprendizaje son las siguientes (Dehaene, 2018):

1. Es la etapa de las imágenes, cuando el cerebro del niño fotografía palabras y se va adaptando visualmente a las letras del abecedario.

2. Es la etapa fonológica en la que el cerebro empieza a convertir las letras en sonidos. Una auténtica revolución cerebral ha de darse para que el niño note que, por ejemplo, el sonido ba está compuesto por los fonemas b y a. El descubrimiento de que el habla está compuesta por fonemas que pueden recombinarse para crear nuevas palabras (conciencia fonológica) es crítico. Los estudios han demostrado que el descubrimiento de los fonemas requiere la enseñanza explícita del código alfabético.

3. Es la etapa ortográfica, cuando el niño es capaz de reconocer palabras de forma rápida y precisa. A diferencia de la etapa fonológica en la que el tiempo de lectura aumenta con la cantidad de letras que tiene una palabra, debido a que los niños las descifran de forma secuencial, letra a letra, en esta etapa ese efecto de longitud va desapareciendo al hacerse la lectura más fluida. Con la práctica, nuestro cerebro seguirá prestando atención a las letras, aunque lo hará de forma distinta. Nuestro sistema visual procesará todas las letras simultáneamente y en paralelo, pero para ello se necesitará mucha práctica.

Habilidades implicadas en la lectura

Tal como hemos comentado, el buen aprendizaje de la lectura requiere muchos años de trabajo continuo que puede verse afectado, por ejemplo, por el tipo de lengua o por el entorno sociocultural en el que crecemos. Junto a esto, se han identificado una serie de habilidades específicas que son importantes en ese aprendizaje. Comentamos brevemente algunas de ellas:

Vocabulario

Los niños aprenden el significado de gran parte de las palabras de forma indirecta a través de experiencias cotidianas con el lenguaje oral y el escrito. Esto incluye conversaciones con otras personas, escuchar cuando se les lee o cuando leen por su cuenta. Y, por supuesto, también aprenden palabras del vocabulario de forma directa cuando se les enseña de forma explícita, lo cual es especialmente relevante en el caso de palabras poco frecuentes. Todo esto es muy importante en la etapa de infantil porque se ha demostrado que la exposición temprana al lenguaje de los niños impacta en sus habilidades lingüísticas, cognitivas y logros académicos posteriores, lo cual está muy vinculado al estatus socioeconómico familiar (Romeo et al., 2018; ver figura 4). La familia tiene que alimentar el apetito lingüístico de los bebés con un léxico rico y frases bien estructuradas porque el vocabulario que dominará la niña o el niño a los 3 o 4 años dependerá de la cantidad y calidad de discurso que le hayamos dirigido.  Disfrutar, por ejemplo, de la lectura compartida de cuentos tiene un impacto positivo en el cerebro de los pequeños activando más regiones críticas del lenguaje, como el territorio de Broca, que más tarde se fortalecerán y les permitirán leer y entender textos (Hutton et al., 2020). Qué importantes son los entornos enriquecidos en el aprendizaje en la infancia. Con paciencia, alegría y mesura. Más no es mejor.

Figura 4.  Los hijos (4-6 años) de familias con niveles educativos e ingresos mayores tienden a obtener mejores resultados en pruebas lingüísticas (Romeo et al., 2018).

Conciencia fonológica

La capacidad de diferenciar y de manipular los sonidos del lenguaje oral es esencial en el aprendizaje de la lectura. Tomar conciencia de que las palabras de la lengua hablada están compuestas por fonemas no es algo obvio, porque nada indica claramente su presencia en el discurso continuo. Ello requiere que el docente enseñe al niño a orientar su atención hacia el nivel acertado de organización del habla. Cuando prestamos atención a los sonidos, orientamos el procesamiento cerebral hacia las áreas cerebrales del lenguaje que se utilizan para la lectura. Ese parece que es el camino adecuado. Los estudios revelan que este entrenamiento fonológico en el que se dirige la atención a las correspondencias entre fonemas y grafemas es el más adecuado para el aprendizaje del niño, y favorece en él un desarrollo autónomo (Castles et al., 2018).

El desarrollo de la conciencia fonológica puede acelerarse con actividades tradicionalmente utilizadas en edades tempranas, tales como las canciones infantiles con juegos de rimas, la poesía, el canto y la música (en general, todo lo que suponga manipular los sonidos de las palabras prepara a los niños para la lectura). Ello se debe a que afectan selectivamente a la actividad oscilatoria de la banda theta (4-8 Hz) en la corteza auditiva. Esta frecuencia theta es aproximadamente la frecuencia en la que se producen las sílabas en todas las lenguas del mundo, es decir, la percepción silábica y la inteligibilidad del habla están relacionadas con el patrón de fase de la banda theta (Goswami, 2020).

Fluidez y comprensión

Una adecuada comprensión lectora requiere una buena capacidad de decodificación, pero también son básicas toda una serie de habilidades lingüísticas asociadas al vocabulario, el dominio gramatical, la comprensión auditiva o al uso de la memoria de trabajo verbal (Hjetland et al., 2019; ver figura 5).

Figura 5.  La decodificación es necesaria, pero no suficiente para la comprensión lectora (adaptación de Nation, 2019).

Leer con fluidez significa leer un texto con rapidez y precisión captando el significado completo del relato. Inicialmente, al lector principiante le cuesta su tiempo leer una palabra, el cual irá en proporción al número de letras de la misma. Durante esta etapa la actividad cerebral abarca un conjunto de regiones más amplio que en el caso del adulto, haciendo participar más a regiones que intervienen en la producción del habla o en procesos atencionales. Esta actividad irá decreciendo conforme la lectura se vaya automatizando. Automatizar la lectura es hacer más fluida la relación directa entre las letras y los sonidos del lenguaje pasando de un proceso necesario de interpretación en serie de los elementos constituyentes de la palabra (cada letra, sílaba y palabra requieren una atención focalizada) a un análisis inconsciente, en paralelo, que permite decodificar la palabra de una vez gracias al análisis simultáneo de sus elementos. Con la práctica, irá dependiendo cada vez menos de la cantidad de letras de la palabra.  De esta forma, el niño irá reconociendo con mayor facilidad las palabras más frecuentes desarrollando la ruta neural que le permite acceder al significado de la palabra a partir de sus letras sin que participe la pronunciación. Esto puede hacer creer que el cerebro utilizaba la forma global de la palabra, pero es una ilusión. Prestar atención a la forma global de las palabras impide descubrir el código alfabético y orienta los recursos del cerebro hacia un circuito inadecuado del hemisferio derecho. Para aprender a leer, solo el entrenamiento fónico, que concentra la atención en las correspondencias entre las letras y los sonidos, activa el circuito de la lectura del hemisferio izquierdo y permite el aprendizaje (Dehaene, 2019; Yoncheva et al., 2010; ver figura 6). Qué importante es la atención en la lectura y en el aprendizaje.

Figura 6. Se les enseñó a los participantes un alfabeto nuevo. Aquellos a los que se les explicó que las palabras están compuestas por letras que representan los fragmentos elementales de la lengua hablada, aprendieron rápidamente a leer, activando con normalidad el área VWFA del hemisferio izquierdo. Los que prestaron atención a la forma global de las palabras, tras muchos ensayos, no lograron percibir que las palabras están formadas por letras. Activaron un circuito del hemisferio derecho que les impidió generalizar el aprendizaje a palabras nuevas (Yoncheva et al., 2010).

En lo referente a la comprensión de un texto, es un proceso complejo que requiere enfrentarse a los diferentes significados de una palabra y escoger la que tenga sentido en su contexto particular.  También requiere una automonitorización continua que nos permita dotar de sentido al texto. Por cierto, un estudio reciente sugiere que leer bien conlleva leer más y no al revés (Van Bergen et al., 2018). Y otro en el que participaron niñas y niños de entre 8 y 12 años de edad, reveló una correlación positiva entre la conectividad en el circuito de la lectura del hemisferio izquierdo y el tiempo dedicado a la lectura de libros, pero una menor conectividad de esas regiones en proporción al tiempo acumulado tras la pantalla del móvil, ordenador, tablet, televisión, etc. (Horowitz-Kraus y Hutton, 2018).

Dificultades en el aprendizaje de la lectura

Aunque próximamente escribiremos un artículo específico sobre la dislexia (concluiremos la trilogía sobre lectura), vale la pena hacer algunos comentarios breves sobre el tema (ver Dehaene, 2018; Richland, 2020).

Algunos niños, por más que reciban una enseñanza adecuada y se esfuercen mucho, presentan dificultades para aprender a leer, mientras que pueden desenvolverse muy bien en otro tipo de tareas. En la mayoría de los casos, la dislexia está asociada a una dificultad en el procesamiento de los fonemas, pero no es la única causa. Las neuroimágenes revelan que el cerebro de los niños presenta una desorganización y una subactivación de las regiones del lóbulo temporal del hemisferio izquierdo del cerebro que sustentan la lectura. Y ya hemos visto que este circuito de la lectura es tan complejo que puede fallar en varias partes (ver figura 7). Todo ello tiene un componente genético. De hecho, se han identificado genes que controlan la migración neuronal hacia la corteza durante el embarazo, con lo que cualquier problema que afecte a ese proceso puede conllevar una desorganización de los circuitos corticales.

Los especialistas no hablan de dislexia hasta que se descartan problemas sensoriales (visuales o auditivos, básicamente), déficits de inteligencia global o una educación de calidad o cantidad inadecuada.

Más allá de las anomalías neuronales asociadas a la dislexia, prácticamente todas las niñas y niños pueden aprender a leer (cerebro único) gracias a los mayores mecanismos cerebrales compensatorios (cerebro plástico) que se dan en la infancia respecto a la adultez. De ahí la importancia de una pronta detección porque garantiza que puedan beneficiarse más de una intervención temprana que tenga en cuenta sus necesidades específicas. Porque como otros déficits de desarrollo, la dislexia puede presentar diferentes perfiles, es decir, cada caso es único con sus particularidades personales. En la práctica, casi siempre una enseñanza paciente e intensiva de las correspondencias entre grafemas y fonemas permite compensar gran parte del déficit.

Figura 7. En niños lectores sin dificultades se da la adecuada conectividad entre los sistemas ventral, dorsal y anterior, pero no en los niños disléxicos (Van der Mark et al., 2011).

Algunas ideas clave

Acabamos este artículo sintetizando algunas ideas extraídas de la lectura del libro que lo inspiró (Mora, 2020):

1.  Aprender a leer conlleva un largo proceso de análisis que va de la letra a la sílaba y de está a la palabra y su significado. A ello le sigue el aprendizaje de la estructura sintáctica de la frase y su nuevo significado.

2️. La actividad de tres regiones del cerebro constituye el sustrato principal de la lectura: área visual de formación de las palabras (construcción de palabras), zona de Wernicke (decodificación y semántica) y zona de Broca (construcción del lenguaje).

3. La lectura cambia físicamente el cerebro y modifica significativamente el lenguaje.

4️. Con el juego se produce la entrada lenta al mundo de los abstractos, las ideas y los conceptos que conducen de lleno al aprendizaje de la lectura.

5️. Aprender a leer bien requiere muchos años de trabajo, habiendo factores que inciden de forma notable, como el entorno familiar y cultural o el tipo de lengua.

6️. Las áreas responsables de la decodificación tienen tiempos diferentes de desarrollo y maduración que pueden variar en cada niño. Su mielinización se completa en torno a los 7 años en la inmensa mayoría.

7️. Los problemas de lectura que presenta un niño arrancan, en su mayoría, de un déficit fonológico.

8. No hay tanto “dislexia” como niños que padecen “su propia dislexia’, es decir, que cada caso es único y con peculiaridades personales.

9️. Leer requiere un foco atencional casi completo, con un tiempo determinado, que puede ser interferido cuando leemos en internet.

10. Iniciar la lectura debe ser un descubrimiento feliz para las niñas y niños.

Ya lo decía Umberto Eco: “quien no lee, con 70 años habrá vivido solo una vida: la suya. Quien lee habrá vivido 5000 años: estuvo cuando Caín mató a Abel, cuando Renzo se casó con Lucía, cuando Leopardi admiraba el infinito”. Y es que al cerebro le encantan las buenas historias.

Jesús C. Guillén


Referencias:

1. Banich, M., Compton, R. (2018). Cognitive Neuroscience (4th ed.). Cambridge: Cambridge University Press.

2. Castles, A. et al. (2018). Ending the reading wars: reading acquisition from novice to expert. Psychological Science in the Public Interest, 19 (1), 5-51.

3. Dehaene, S. (2018). El cerebro lector. Ultimas noticias de las neurociencias sobre la lectura, la enseñanza, el aprendizaje y la dislexia. Buenos Aires: Siglo XXI.

4. Dehaene, S. (2019). ¿Cómo aprendemos?: Los cuatro pilares con los que la educación puede potenciar los talentos de nuestro cerebro. Buenos Aires: Siglo XXI Editores.

5. Dehaene S. et al. (2015). Illiterate to literate: behavioral and cerebral changes induced by reading acquisition. Nature Review Neuroscience, 16(4), 234-244.

6. Dehaene-Lambertz, G. et al. (2018). The emergence of the visual word form: longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLoS Biology, 16 (3).

7. Goswami, U. (2020). Reading Acquisition and Developmental Dyslexia. Educational Neuroscience and Phonological Skills. En Thomas, M. et al. (Eds), Educational Neuroscience Development Across the Life Span, 144-168.

8. Hjetland, H. N. et al. (2019). Pathways to reading comprehension: a longitudinal study from 4 to 9 years of age. Journal of Educational Psychology, 111 (5), 751-763.

9. Horowitz-Kraus, T., Hutton, J.S. (2018). Brain connectivity in children is increased by the time they spend reading books and decreased by the length of exposure to screen-based media. Acta Paediatrica, 107, 685-693.

10. Hutton, J. S. et al. (2020). Associations between home literacy environment, brain white matter integrity and cognitive abilities in preschool-age children. Acta Paediatrica, 109(7), 1376-1386.

11. Marinkovic, K. et al. (2003). Spatiotemporal dynamics of modality-specific and supramodal word processing. Neuron, 38(3), 487-497.

12. Mora, F. (2020). Neuroeducación y lectura. De la emoción a la comprensión de las palabras. Madrid: Alianza Editorial.

13. Nation, K. (2019). Children’s reading difficulties, language, and reflections on the simple view of reading. Australian Journal of Learning Difficulties, 24(1), 47-73.

14. Richlan F. (2020). The functional neuroanatomy of developmental dyslexia across languages and writing systems. Frontiers in Psychology, 11 (155).

15. Romeo, R. R. et al. (2018). Beyond the 30-million-word gap: Children’s conversational exposure is associated with language-related brain function. Psychological Science, 29 (5), 700-710.

16. Rueckl, J. G. et al. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages, PNAS, 112 (50), 15.510-15.515.

17. Van Bergen, E. et al. (2018). Why do children read more? The influence of reading ability on voluntary reading practices. Journal of Child Psychology and Psychiatry, 59 (11), 1205-1214.

18. Van der Mark S. et al. (2011). The left occipitotemporal system in reading: disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. NeuroImage, 54. 2426-36.

Categorías:Neurodidáctica Etiquetas: , , ,

El cerebro lector: algunas ideas clave

Cuanto antes se automatice la lectura, más podrá el niño concentrar su atención en comprender lo que lee y volverse así un lector autónomo, tanto para aprender otras cosas como para su propia diversión.

Stanislas Dehaene

La lectura constituye una de las actividades más asequibles para mantener una buena salud cerebral porque en ese proceso intervienen muchas funciones cognitivas diferentes, como la percepción, la atención, la memoria o el razonamiento. Al leer, se activa una gran cantidad de circuitos neuronales y regiones concretas del cerebro (ver figura 1) que nos permiten, en milésimas de segundo, reconocer las letras, combinarlas para formar grafemas y palabras, asignarles sonidos para poder pronunciarlas y dotarlas de significado.

El aprendizaje de la lectura es una de las áreas de investigación en neurociencia que ha suministrado más información novedosa con implicaciones pedagógicas en los últimos años. Y es esa información la que queremos compartir con todos vosotros en este nuevo artículo en Escuela con Cerebro, especialmente las investigaciones dirigidas por uno de los grandes neurocientíficos de esta época: Stanislas Dehaene.

Figura 1

Leer no es natural

La lectura no constituye una actividad natural para el niño. El invento de la escritura hace 5000 años es demasiado reciente para que pueda haber influido a nivel evolutivo en nuestro cerebro por lo que, a diferencia del lenguaje hablado, constituye una habilidad que debemos aprender porque no disponemos en nuestra herencia genética de circuitos neurales específicos para la lectura. Esta es la razón por la que su aprendizaje puede ser más difícil en muchos niños, como en el caso de la dislexia. Afortunadamente, la plasticidad inherente al cerebro humano ha desarrollado un papel esencial en el reordenamiento y especialización de redes neuronales primitivas y esa misma plasticidad cerebral puede actuar como mecanismo de compensación ante las dificultades en el aprendizaje de la lectura.

Aunque la lectura es una destreza nueva para el cerebro, su aprendizaje varía según la lengua. Así, por ejemplo, en lenguas transparentes como el español, los niños requieren menos tiempo para aprender la gran mayoría de las palabras debido a que existe una correspondencia entre fonemas y grafemas (un sonido corresponde a una letra), mientras que el proceso se ralentiza en lenguas más opacas como el inglés debido a sus mayores irregularidades (Dehaene, 2015).

Los bebés, genios lingüísticos

Antes de aprender a leer, el cerebro del bebé ya está organizado para el lenguaje hablado activando, con pocos meses de edad, circuitos neurales del hemisferio izquierdo idénticos a los que activan los adultos al escuchar frases en su lengua materna (Dehaene, 2013). Los bebés son capaces, en los primeros meses, de reconocer sonidos de cualquier idioma pero antes de cumplir los dos años ya muestran preferencias por aquellos de la lengua a la que están expuestos (Kuhl, 2010). Y cuando el niño tiene dos años puede nombrar los objetos en voz alta porque tiene un sistema visual organizado que le permite identificarlos. Pero leer una palabra requiere mayor complejidad y los estudios en neurociencia revelan que para reconocer letras y palabras escritas se ha de reciclar una región específica de la corteza visual: el área visual de formación de palabras o “caja de letras del cerebro” (en inglés VWFA, visual word form area, o letterbox), una región en la que se concentra gran parte del conocimiento visual de las letras y de sus combinaciones (ver figura 2). Sin olvidar que aunque existan periodos sensibles en el aprendizaje de la lectura, un aprendizaje temprano del niño a los 3 años de edad no tiene por qué ser más eficiente que cuando se da a los siete u ocho años, por ejemplo (Tokuhama-Espinosa y Rivera, 2013).

Figura 2

Reciclaje neuronal

Las evidencias empíricas sugieren que para el aprendizaje de la lectura se necesita que una parte de las neuronas de una región que integra las áreas visuales del cerebro del niño en el lóbulo temporal izquierdo y que le sirven para reconocer objetos y rostros, la llamada “caja de letras”, se recicle para que pueda responder cada vez más a las letras y las palabras (Dehaene y Cohen, 2011). Esta importante región que interviene en un circuito de lectura universal que comprende rutas tanto fonológicas como semánticas, se activa de forma proporcional a la capacidad lectora, es decir, los lectores adultos y los niños que aprendieron a leer activan más la “caja de letras” que las personas analfabetas o los niños que no han aprendido a leer todavía (ver figura 3), respectivamente (Dehaene, 2014). Y no solo es esta región cerebral la que se desarrolla, porque aprendiendo a leer se mejoran circuitos que codifican la información visual o los sonidos de las palabras, lo cual tiene una incidencia positiva en la memoria oral.

Figura 3

Conciencia fonológica

La conciencia fonológica es una competencia esencial en el aprendizaje de la lectura que permite al niño ser consciente de los sonidos elementales, los fonemas, que componen las palabras del lenguaje hablado. En la fase inicial del aprendizaje de la lectura, en el que se va conociendo el abecedario, es imprescindible la decodificación fonológica que permitirá al niño ir articulando los fonemas que forman una sílaba (caaa-saaa) y descomponer cada palabra letra a letra (c-a-s-a) para identificarla y conocer su significado. Cuando el proceso se vaya automatizando, el cerebro ya no necesitará descomponer la palabra letra a letra y la identificará con su representación ortográfica buscando su significado. En la práctica, puede acelerarse la adquisición de la conciencia fonológica con juegos lingüísticos como adivinanzas, rimas, rondas infantiles, etc. (Shanahan y Lonigan, 2010).

Atención, pero la adecuada

En el niño existirá una tendencia natural a interpretar la palabra como un todo. Pero se requiere una atención selectiva para poder ir identificando las letras que conforman las palabras. En la práctica, se ha comprobado que no es suficiente exponer al niño a letras sino que hay que ir enseñando de forma sistemática las correspondencias entre fonemas y grafemas para acelerar el aprendizaje de la lectura porque es lo que permite que áreas corticales terminen especializándose en el reconocimiento de las palabras escritas. Al explicar a los niños que las palabras están compuestas por letras que constituyen las unidades elementales del lenguaje hablado se activa con normalidad la “caja de letras” del cerebro y con ello el circuito de lectura universal del hemisferio izquierdo que es el más eficiente. Sin embargo, cuando se focaliza la atención en la palabra completa, la información satura la memoria de trabajo del niño y se activa una región del hemisferio derecho que es menos eficiente en el proceso de la lectura (Dehaene et al., 2015). En definitiva, el entrenamiento fonológico en el que se enfoca la atención en las correspondencias entre fonemas y grafemas parece ser el más adecuado para el aprendizaje del niño y le permite un desarrollo autónomo. Además, también se ha comprobado que es el más eficaz en el caso de niños disléxicos (Shaywitz et al., 2004).

Escritura en espejo

La confusión de letras en espejo (por ejemplo, “b” y “d”; ver figura 4) es una confusión que puede darse de forma transitoria en cualquier niño, no solo en los disléxicos, y está directamente relacionada con el reciclaje neuronal del que hablábamos anteriormente. Nuestro cerebro evolucionó desarrollando un sistema que nos permite identificar los rostros y saber que una persona es la misma vista desde la izquierda que desde la derecha. Y esta misma organización cerebral es la que hace que el niño vea letras simétricas y las identifique como iguales. Pero esta capacidad cerebral para el reconocimiento visual de caras no es útil en la escritura y se ha de producir el correspondiente reciclaje neuronal, o si se quiere el desaprendizaje en la “caja de letras del cerebro” (Dehaene et al., 2010). Y en este proceso, se ha comprobado que es muy útil enseñar a los niños ejercicios en los que vayan trazando las letras con los dedos, es decir, añadir a los estímulos visuales y auditivos la exploración háptica, a través de la práctica de los gestos de escritura, acelera el aprendizaje de la lectura (Fredembach et al., 2009) incidiendo en una ruta neural específica que no está asociada al reconocimiento de objetos sino a su orientación.

Figura 4

Automatismos

A través de la práctica, el niño automatizará el proceso de la lectura liberando espacio en su memoria de trabajo y mejorando así la eficiencia cerebral. No es casualidad que el grado de comprensión de los textos escritos por parte de los adolescentes dependa de la frecuencia de sus lecturas durante la infancia (Cunningham y Stanovich, 1997).

En los lectores expertos se activan de forma paralela dos rutas neurales de procesamiento complementarias: la fonológica, que nos permite pronunciar las palabras nuevas e intentar acceder al significado de las mismas, y la léxica, que es la que utilizamos para palabras conocidas y que nos permite recuperar de forma directa su significado (Dehaene et al., 2015). Pues bien, el niño, conforme va automatizando la lectura, convierte la decodificación fonológica de la palabra en letras en un proceso simultáneo, reconociendo con mayor rapidez las palabras frecuentes porque empieza a desarrollar la ruta léxica y así puede interpretar directamente el significado de las palabras escritas sin mediar los sonidos de la pronunciación. Según el niño aprende a leer dispone de más herramientas que le permiten entender el significado de las palabras.

¿Y en el caso de la dislexia?

A pesar de que algunos niños reciben una enseñanza adecuada y se esfuerzan mucho, tienen dificultades para aprender a leer. Y pueden desenvolverse muy bien en otro tipo de tareas.

En la actualidad sabemos que la dislexia tiene un origen genético, se da más en las lenguas opacas y está asociada a una mayor dificultad en la adquisición de la conciencia fonológica. Las neuroimágenes han revelado que existe una activación anormal en la corteza occipito-temporal izquierda, en el giro frontal inferior izquierdo o en el lóbulo parietal inferior, regiones cerebrales que intervienen en la descodificación fonológica, las representaciones fonológicas y la atención, respectivamente (Ylinen y Kujala, 2015). Y ello repercute, especialmente, en una organización deficiente de la “caja de letras del cerebro”. La buena noticia es que la gran mayoría de los niños disléxicos puede aprender a leer a través de una práctica intensiva en la que hemos de ser pacientes para enseñarles a orientar la atención hacia los grafemas, los fonemas y sus correspondencias.

Qué importante es la detección temprana de estos déficits para que podamos aplicar los correspondientes programas compensatorios. Y en los últimos tiempos se ha comprobado la eficacia de algunos programas informáticos presentados como videojuegos, como Graphogame, en el que los niños han de decidir con rapidez qué letras corresponden a los sonidos (ver figura 5). Unas cuentas horas repartidas en pocas semanas son suficientes para que mejore la “caja de letras del cerebro” de niños disléxicos o de aquellos con dificultades en el aprendizaje de la lectura pertenecientes a entornos desfavorecidos (Ojanen et al., 2015).

Figura 5

Principios fundamentales

La neurociencia ha identificado los circuitos cerebrales principales que sustentan el aprendizaje de la lectura y estos conocimientos, como tantas veces hemos comentado en Escuela con Cerebro, son compatibles con diversas estrategias educativas. Así, por ejemplo, aunque hemos visto la importancia de orientar la atención hacia los grafemas y los fonemas y no a la palabra de forma global, igual de útil será un enfoque que parte de la palabra para descomponerla en letras que, al revés, partir de las letras para componer las palabras.

Como consecuencia de todas sus investigaciones realizadas, Stanislas Dehaene (2015) ha establecido una serie de principios básicos, todos ellos igual de importantes, que pueden orientar la enseñanza de la lectura en la fase inicial en la que la decodificación fonológica adquiere un protagonismo fundamental. Estos principios que están referidos al español y que acompañamos con un brevísimo comentario son los siguientes:

  1. Principio de enseñanza explícita del código alfabético: el abecedario español funciona atendiendo a reglas simples que se han de conocer.
  2. Principio de progresión racional: hay ciertos grafemas que son prioritarios por lo que hay que enseñarlos antes.
  3. Principio de aprendizaje activo, que asocia lectura y escritura: aprender a componer las palabras y a escribirlas facilita el aprendizaje de la lectura en muchas etapas.
  4. Principio de transferencia de lo explícito a lo implícito: se ha de facilitar el proceso de automatización de la lectura.
  5. Principio de elección racional de los ejemplos y de los ejercicios: la elección de ejercicios y ejemplos ha de ser cuidadosa y debe tener en cuenta el nivel del alumno.
  6. Principio de compromiso activo, de atención y de disfrute: el contexto de aprendizaje ha de permitir que el niño se sienta seguro y motivado.
  7. Principio de adaptación al nivel del niño: el proceso de aprendizaje no puede ser mecánico sino que debe suministrar retos adecuados que permitan al niño sentirse protagonista y seguir avanzando.

En la enseñanza, muchas veces, las simples intuiciones no son suficientes para garantizar las buenas prácticas educativas y es por ello que los docentes deberíamos analizarlas y contrastarlas de forma rigurosa en el aula. Conocer los factores fisiológicos, socioemocionales o conductuales que inciden en el aprendizaje de la lectura facilitará el progreso de cada niño. Y eso es lo más importante.

Jesús C. Guillén

Referencias:

  1. Cunningham A. E. y Stanovich K. E. (1997): “Early reading acquisition and its relation to reading experience and ability 10 years later”. Deviant Psychology 33(6), 934-945.
  2. Dehaene, Stanislas (2015). Aprender a leer: de las ciencias cognitivas al aula. Siglo XXI Editores.
  3. Dehaene S. (2014): “Reading in the brain revised and extended: response to comments”. Mind & Language 29, 320-335.
  4. Dehaene S. (2013): “Inside the letterbox: how literacy transforms the human brain”. Cerebrum, June.
  5. Dehaene S. et al. (2015): “Illiterate to literate: behavioral and cerebral changes induced by reading acquisition”. Nature Review Neuroscience 16(4), 234-244.
  6. Dehaene S. y Cohen L. (2011): “The unique role of the visual word form area in reading”. Trends in Cognitive Sciences 15(6), 254-262.
  7. Dehaene S. et al. (2010): “Why do children make mirror errors in reading? Neural correlates of mirror invariance in the visual word form area”. Neuroimage 49(2), 1837-1848.
  8. Fredembach B. et al. (2009): “Learning of arbitrary association between visual and auditory novel stimuli in adults: the ‘bond effect’ of haptic exploration”. PLoS One 4(3): e4844.
  9. Kuhl P. K. (2010): “Brain mechanisms in early language acquisition”. Neuron Review 67, 713-727.
  10. McCandliss B. D. (2010): “Educational neuroscience: the early years”. PNAS 107(18), 8049-8050.
  11. Ojanen E. et al. (2015): “GraphoGame – a catalyst for multi-level promotion of literacy in diverse contexts”. Frontiers in Psychology 6(671), June.
  12. Shanahan T. y Lonigan C. J. (2010): “The National Early Literacy Panel: a summary of the process and the report”. Educational Researcher 39(4), 279-285.
  13. Shaywitz B. A. et al. (2004): “Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention”. Biological Psychiatry 55(9), 926-933.
  14. Tokuhama-Espinosa T. y Rivera G. M. (2013). Estudio del arte sobre conciencia fonológica. CEEC/SICA.
  15. Ylinen S. y Kujala T. (2015): “Neuroscience illuminating the influence of auditory or phonological intervention on language-related deficits”. Frontiers in Psychology 6(137), February.
Categorías:Neurodidáctica Etiquetas: , ,