Archivo

Posts Tagged ‘Neuroeducación’

Seminario de Neuroeducación

25 noviembre, 2014 4 comentarios

El pasado sábado 22 de noviembre fuimos invitados al Seminario de Neuroeducación que se realizó en el Centro de Recursos Pedagógicos (CRP) de Gerona. Compartimos un día maravilloso con docentes y psicopedagogas que nos permitió analizar investigaciones recientes en el ámbito de las neurociencias y sus correspondientes implicaciones educativas. A continuación, resumimos algunos de los temas expuestos que entendemos son críticos en los procesos de enseñanza y aprendizaje.

ipp

NEUROEDUCACIÓN

La neuroeducación constituye una nueva disciplina que tiene como objetivo optimizar los procesos de enseñanza y aprendizaje basándose en los conocimientos que tenemos sobre el funcionamiento del cerebro humano. Este enfoque transdisciplinar en el que confluyen investigaciones realizadas en neurociencia, psicología y pedagogía surgió como consecuencia del desarrollo de las nuevas tecnologías de visualización cerebral, especialmente las no invasivas, como la resonancia magnética funcional, desarrolladas a partir de los años noventa.

Antiguamente sólo teníamos acceso al cerebro humano mediante autopsias o cirugías complicadas, mientras que en la actualidad podemos analizar el cerebro humano en pleno funcionamiento realizando tareas similares a las que se realizan en la escuela (ver figura 1). En este sentido, las investigaciones en neurociencia que nos permiten conocer cómo el cerebro lee, calcula, atiende, memoriza, se desarrolla, se relaciona o se reestructura continuamente, suministran un soporte empírico a muchas  prácticas educativas, aportan una justificación fisiológica a muchos experimentos realizados en psicología del desarrollo y sirven para mejorar el diagnóstico y tratamiento de diversos trastornos del aprendizaje.

1.Cerebro matemático

El hecho de que en neuroeducación confluyan disciplinas que utilizan métodos, procedimientos o un vocabulario diferentes ha conllevado la aparición de falsas creencias o interpretaciones erróneas de las investigaciones en neurociencia en los entornos educativos. Son los llamados neuromitos que los docentes hemos de conocer con la ayuda de esa nueva figura del neuroeducador que, en lugar de ser un nuevo profesional, podría ser un profesor con los conocimientos necesarios sobre el cerebro que le permitieran trasladar de forma adecuada la información del laboratorio al aula.

Los nuevos conocimientos sobre el funcionamiento del cerebro constituyen un nuevo paradigma educativo en el que el aprendizaje es significativo, la enseñanza no está descontextualizada, se educa a los alumnos para ser personas íntegras que puedan actuar y mejorar la sociedad y en donde el profesor pasa a ser un investigador en el aula flexible preocupado preferentemente por el impacto que tienen sus estrategias pedagógicas en el aprendizaje y formación del alumno.

Analicemos brevemente algunos de los factores clave de esta nueva neuroeducación con sus correspondientes implicaciones educativas:

Plasticidad cerebral

Sabemos que nuestro cerebro no funciona como un ordenador. Trabaja en abierto y en paralelo de forma incesante, procesa la información identificando patrones a partir de sus conocimientos previos, anhela la novedad, toma decisiones influido por las emociones y es social. Pero, además, el cerebro humano es muy plástico y está continuamente reorganizándose como consecuencia de su interacción continua con el entorno. Qué útil resulta enseñarles a los alumnos imágenes de resonancias magnéticas en las que se muestran cómo las regiones disfuncionales del cerebro de un disléxico (con otros trastornos del aprendizaje también) mejoran como consecuencia del entrenamiento adecuado (ver figura 2), porque la principal implicación educativa de la plasticidad cerebral es que podemos esperar la mejora de cualquier alumno. Las creencias previas y los factores emocionales son críticos en el aprendizaje por lo que las expectativas del profesor han de ser siempre positivas. Etiquetar a los alumnos es irresponsable y tremendamente perjudicial.

Hoy sabemos que nuestro cerebro es plástico, existe la neurogénesis y la inteligencia no es fija. El conocimiento de esta información por parte de los alumnos constituye un elemento motivacional imprescindible.

2.Plasticidad cerebral

Emociones

Estudios realizados en años recientes han demostrado que los procesos emocionales son indisolubles de los cognitivos. Ante contextos emocionales positivos se activa el hipocampo, región cerebral importante para la memoria, mientras que ante estímulos negativos se activa la amígdala, región cerebral que se activa ante reacciones emocionales, especialmente las de miedo o temor (ver figura 3). Esto sugiere la necesidad imperiosa de generar climas emocionales positivos en el aula que favorezcan el aprendizaje y en los que se asuma el error de forma natural, se proporcionen retos adecuados, se fomente la participación y el aprendizaje activo, haya expectativas positivas del profesor y se elogie por el esfuerzo y no por la inteligencia.

3.Emociones

La implementación de programas socioemocionales en el aula bien estructurados y que no se restringen a las clases de tutoría producen mejoras en el alumnado tanto a nivel conductual como académico. El aprendizaje del autocontrol, de la resiliencia o de la metacognición es  imprescindible en el desarrollo personal y académico del alumno y se mejoran fomentando la autonomía, generando entornos seguros o a través de la práctica de rutinas de pensamiento que acostumbran al alumno a reflexionar sobre lo que hace. En estos programas, la introducción de técnicas relacionadas con la relajación y el mindfulness también están avaladas por las investigaciones en neurociencia dado que han demostrado que mejoran la actividad de la corteza prefrontal izquierda (asociada al optimismo y a las emociones positivas) y la conexión entre los circuitos neuronales de la amígdala y la corteza frontal que hace que las personas soportemos mejor la frustración.

Atención

La atención constituye un recurso limitado. Los estudios han demostrado que existen varias redes atencionales que activan diferentes regiones cerebrales: de alerta, orientativa y ejecutiva (ver figura 4). Es esta última la que nos permite concentrarnos en las tareas académicas como resolver un problema o seguir el proceso de explicación del profesor y que se ha demostrado en niños pequeños que puede mejorarse, en tan solo 5 días, utilizando el software adecuado.

4.Atención

La forma directa de captar esta atención es a través de la novedad. La curiosidad activa esos circuitos emocionales del cerebro que nos permiten estar atentos facilitándose así el aprendizaje. En la práctica, eso se puede hacer planteando preguntas abiertas, retos, tareas activas, utilizando metáforas, incongruencias o simplemente contando historias que inviten a la reflexión. Asimismo, si la atención no se puede mantener, resulta necesario dividir la clase en diferentes bloques  de 10 o máximo 15 minutos para optimizarla. El bloque inicial resulta crucial desde la perspectiva atencional por lo que se debería dedicar a analizar las cuestiones más importantes. Posteriormente, podríamos destinar otros, por ejemplo, a debatir y reflexionar sobre lo anterior o a realizar tareas fomentando el trabajo cooperativo. Y en el final es interesante realizar alguna actividad como un resumen, un mapa conceptual o un simple debate entre compañeros que permita analizar y reflexionar sobre lo que se ha trabajado durante la clase.

Memoria

No hay aprendizaje sin memoria. Otra cuestión diferente es que, tradicionalmente, no se haya utilizado de forma adecuada y haya predominado el conocimiento de datos superficiales en detrimento de la reflexión y de los conocimientos profundos. Pero hemos de saber que en el aprendizaje influye tanto esa memoria explícita que podemos verbalizar y que nos permite conocer datos o cuestiones autobiográficas, como esa memoria implícita que es inconsciente y que nos permite aprender a través de la adquisición de hábitos (ver figura 5). Así, por ejemplo, aprendemos a escribir a través de la práctica continua (implícita) pero adquirimos el conocimiento de toda una serie de reglas ortográficas  (explícita). Evidentemente aprender de memoria no ha de ser el objetivo pero en algunos casos es imprescindible. Se ha demostrado, por ejemplo, que los niños que no conocen de memoria las tablas de multiplicar muestran más dificultades al resolver problemas aritméticos.

5.Memoria

Como el cerebro humano está continuamente haciendo predicciones e identificando patrones, en el aula  es indispensable detectar los conocimientos previos de los alumnos con evaluaciones iniciales para ir generando así el aprendizaje a través de un proceso constructivista. Sin olvidar, como comentábamos anteriormente, la influencia de los factores emocionales al memorizar.

En neurociencia se clasifica la memoria atendiendo a la duración que requiere el aprendizaje en cuestión. Se habla de memoria de corto plazo como aquella que requiere manipular pequeñas cantidades de información en breves periodos de tiempo (por ejemplo, al marcar un número de teléfono), mientras que la memoria a largo plazo es aquella más estable y duradera que utilizamos para recordar normalmente. Aprendemos cuando se produce un proceso de consolidación de la memoria, es decir,  cuando hay una transición de información de la memoria de corto plazo a la memoria de largo plazo (desde el hipocampo se envía la información a diferentes regiones de la corteza cerebral).

Un tipo de memoria de corto plazo que requiere mayor reflexión es la memoria de trabajo que utilizamos, por ejemplo, al resolver problemas y que está relacionada con la inteligencia general. Podremos liberar espacio de la memoria de trabajo y evitar que se sature cuando tengamos más conocimientos almacenados en la memoria de largo plazo y esto se hace a partir de la práctica continua, por lo que ello sugiere la necesidad de utilizar un currículo en espiral que permita mediante la práctica distribuida ir mejorando el aprendizaje. Pero para que este procedimiento sea efectivo se ha de tener en cuenta lo que ya conoce el alumno y la información ha de ser relevante, es decir, el alumno ha de encontrar el sentido y el significado a lo que está aprendiendo.

Respecto a las implicaciones pedagógicas sobre fomentar el pensamiento profundo en detrimento del superficial, no podemos obviar que aunque los humanos somos curiosos por naturaleza nos cuesta reflexionar  (eso requiere un gasto energético suplementario) y esa es la razón por la que echamos mano de la memoria con rapidez. Sin embargo, se ha comprobado que lo novedoso, los retos adecuados, comparar ejemplos diferentes, suministrar preguntas abiertas, proponer problemas reales o utilizar metáforas ayuda en la mejora del proceso.

Ejercicio físico, sueño y alimentación

El ejercicio físico, especialmente el aeróbico, no solo beneficia nuestra salud o nuestro estado emocional sino que también lo hace a nivel cognitivo. Promueve la neurogénesis en el hipocampo, genera neurotransmisores importantes para la atención y el aprendizaje como la dopamina o la noradrenalina y reduce el estrés. Unos minutos de actividad aeróbica moderada previa a unas pruebas de comprensión lectora,  de ortografía y  de aritmética mejoran los resultados de los alumnos (ver figura 6). Incluso en un estudio longitudinal que analizó el comportamiento de un millón de suecos se comprobó que aquellos que practicaban ejercicio físico continuado obtenían mejores resultados en pruebas cognitivas y no solo eso sino que años después seguían mostrando mejores habilidades mentales acompañadas por mayores logros académicos y profesionales.

6.Ejercicio físico.

Todo ello sugiere la necesidad de un aprendizaje activo en el que se ha de dedicar más tiempo al ejercicio físico y en donde las clases de educación física deberían colocarse al comienzo del horario escolar y no al final como se ha hecho tradicionalmente.

Y para recuperarse bien, no solo a nivel físico sino también mental, el cerebro necesita el sueño. El sueño actúa como un regenerador neuronal necesario de la actividad diurna y es imprescindible para el aprendizaje porque, aunque durante el mismo no se aprenda información novedosa sí que se consolidan las memorias. En el caso del adolescente es especialmente importante porque debido a  cuestiones hormonales existe un retraso en sus ritmos circadianos y una necesidad de dormir mayor que en los adultos. En muchas escuelas norteamericanas se ha comprobado que el retraso del horario escolar  conlleva  mejoras conductuales y cognitivas de los alumnos.

En cuanto a los hábitos alimenticios, todavía nos encontramos muchos adolescentes que llegan a la escuela sin haber desayunado. El cerebro para su correcto funcionamiento necesita una cierta cantidad de proteínas y la ingesta adecuada de hidratos de carbono para disponer de la energía necesaria. Asimismo, el realizar pequeñas ingestas durante el día ayuda a mantener los niveles de azúcar estables en sangre necesarios para disponer de recursos energéticos sin fluctuaciones.

El juego

El juego es un mecanismo natural arraigado genéticamente en el que confluyen emociones, placer y recompensa y que nos permite descubrir desde el nacimiento el mundo que nos rodea. Aprendemos jugando y nos gusta porque se libera dopamina (ver figura 7) que hace que la incertidumbre asociada al juego nos motive y que exista ese feedback tan importante para el aprendizaje. Jugando se adquieren competencias imprescindibles relacionadas con el pensamiento estratégico, la concentración o la toma de decisiones. Asimismo, existen varios estudios que demuestran los efectos positivos sobre la atención al jugar en entornos naturales.

7. Juego

En cuanto al uso de tecnologías en el aula constituye un medio, no el fin, para optimizar el aprendizaje. Relacionado con ello, no podemos obviar la necesidad en edades tempranas de la  imprescindible interacción social.

La utilización de programas informáticos  específicos se ha demostrado eficaz para mejorar la memoria de trabajo, la atención ejecutiva y, muy especialmente, para la mejora de trastornos del aprendizaje como la dislexia (por ejemplo, Fast forWord) o la discalculia (por ejemplo, Number Catcher).

Las artes y la creatividad

La creatividad es útil, no es innata y se puede y se debe enseñar. Las investigaciones en neurociencia han demostrado que la aparición repentina de soluciones ingeniosas a problemas que nos habían provocado ese tan típico bloqueo mental son beneficiadas generando inicialmente  muchas ideas, para luego en una fase de concreción asociarlas e ir evaluándolas (ver figura 8). Y no solo eso, sino que suelen aparecer tras un estado de relajación mental como el que se da tras el sueño reparador.

8.Creatividad

Para fomentar entornos creativos en el aula, los docentes hemos de estimular la curiosidad de los alumnos, aceptar preguntas abiertas, admitir resoluciones diferentes a las estrictamente académicas y generar entornos seguros donde se acepta y se analiza el error para mejorar el aprendizaje. En ese aspecto, son muy útiles los organizadores gráficos de analogías y diferencias o las rutinas de pensamiento como la KWL en donde se pide al alumno que reflexione sobre lo que sabe, lo que debe saber y lo que ha aprendido sobre un determinado contenido.

El aprendizaje basado en proyectos, por indagación o el basado en la resolución de problemas están muy en consonancia con la neuroeducación porque fomentan la interacción social y constituyen una estupenda forma de tratar la diversidad en el aula, por lo que la evaluación formativa se nos antoja imprescindible. Al fin y al cabo, cada alumno tiene un ritmo de desarrollo cerebral diferente.

Asimismo, las actividades artísticas como la música, el teatro o el baile son muy útiles para fomentar la creatividad. Y no solo eso sino que sus beneficios abarcan lo emocional, lo social y lo cognitivo. Por ejemplo, el teatro constituye una estupenda forma de mejorar el autocontrol de los niños y varios estudios sugieren la correlación entre el entrenamiento musical y la mejora de la comprensión lectora o de la aritmética en la infancia.

El cerebro social

Somos seres sociales y eso es lo que realmente nos hizo humanos. Diversos estudios han demostrado la existencia de comportamientos altruistas en bebés de pocos meses de edad. Además, el descubrimiento de las neuronas espejo constituyó la justificación fisiológica del aprendizaje por imitación tan importante en la transmisión de la cultura: 42 minutos son suficientes para que recién nacidos imiten gestos de sus padres. Otros estudios con adultos han demostrado que al cooperar se activa el sistema de gratificación de la dopamina, se genera más altruismo y se aplaza la recompensa (ver figura 9).

9.Cerebro social

 Disponemos de circuitos cerebrales que intervienen tanto en nuestra autoconciencia como en la comprensión empática de los demás por lo que la enseñanza del trabajo cooperativo en el aula resulta una competencia imprescindible en los tiempos actuales y que está en plena consonancia con el propio proceso evolutivo del ser humano. Cooperar es algo más que colaborar porque conlleva una implicación mayor a nivel emocional entre los integrantes del grupo por lo que los docentes hemos de enseñar a los alumnos toda una serie de competencias interpersonales básicas relacionadas con el respeto, la solidaridad, la comunicación, la toma de decisiones o la resolución de conflictos. Al cooperar los alumnos ponen en práctica estas competencias, interactúan y trabajan responsabilizándose a nivel individual y de grupo para alcanzar los objetivos propuestos. Además, son capaces de evaluar su propio proceso de aprendizaje.

La escuela debería fomentar también la cooperación entre alumnos de distintas edades promoviendo la realización de actividades interdisciplinares que pudieran romper la tradicional y jerarquizada distribución del horario escolar en asignaturas. Sin olvidarnos que la educación abarca a toda la comunidad.

Conclusiones finales

Ya no hay excusas para mejorar la educación. Los nuevos tiempos requieren nuevas estrategias y las investigaciones en neurociencia nos han suministrado en los últimos diez años tanta información relevante sobre cómo funciona el cerebro humano que no nos podemos quedar al margen sin actuar. Pero para ello se requiere la necesaria voluntad que sabemos que no es innata. Existe una necesidad evidente de que el currículo contemple muchas de las cuestiones analizadas si queremos mejorar los procesos de enseñanza y aprendizaje  y formar personas útiles, responsables, íntegras y en definitiva felices. El profesor, como instrumento didáctico imprescindible, con la necesaria vocación y el requerido entusiasmo, debe convertirse en un investigador de sus propias prácticas pedagógicas analizando siempre el impacto que tienen sobre el aprendizaje de sus alumnos. En consonancia con esto, los propios centros educativos deberían permitirle dedicar unas horas a realizar este proceso de reflexión personal tan importante. Sin olvidar que el progreso y la implementación de las nuevas estrategias requieren tiempo.

La neuroeducación resulta necesaria porque promueve un aprendizaje para la vida que nos hace más felices. Y ese es el principal objetivo existencial.

Jesús C. Guillén

Referencias:

  1. Dehaene S. et al. (1999): “Sources of mathematical thinking: behavioral and brain-imaging evidence”. Science, 284.
  2. Erk S. et al. (2003): “Emotional context modulates subsequent memory effect”. Neuroimage, 18.
  3. Hillman C. H. et al. (2009): “Aerobic fitness and cognitive development: event-related brain potential and task performance indices of executive control in preadolescent children”. Developmental Phychology, 45.
  4. Jung-Beeman et al. (2004): “Neural activity when people solve verbal problems with insight”. Plos Biology, 2.
  5. Kandel, Eric (2007). En busca de la memoria. Katz.
  6. Posner, Michael I. y Rothbart, Mary K. (2007). Educating the human brain. American Psychological Association.
  7. Rilling et al. (2002): “A neural basis for social cooperation”. Neuron, 35.
  8. Spitzer, Manfred (2005). Aprendizaje: neurociencia y la escuela de la vida. Omega.
  9. Temple, E. et al. (2003): “Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI”, PNAS 100.

VII Jornada Internacional Aprendizaje, Educación y Neurociencias

VII Jornada Internacional Aprendizaje, Educación y Neurociencias

Nos complace informaros, tal como hemos hecho en los últimos años, de la celebración de la VII Jornada Internacional Aprendizaje, Educación y Neurociencias los próximos días 16 y 17 de octubre en la Facultad de Medicina de la Universidad de Chile. Su director vuelve a ser el Dr. Sergio Mora Gutiérrez (ver video), profesor de Farmacología y Jefe de Laboratorio en la misma Facultad, que desde hace mucho tiempo se ha dedicado a la investigación y a la difusión de la neuroeducación, disciplina basada en el conocimiento del cerebro que “no sólo puede ayudarnos a responder la pregunta de cómo aprendemos sino que también puede mostrarnos lo que podemos hacer para enseñar mejor”, según sus propias palabras (ver entrevista completa).

Destacados especialistas en neurociencia y en educación, tanto de Chile como de otros países latinoamericanos o España, se encargarán de difundir los principios fundamentales que se derivan de las modernas investigaciones con el objetivo de contribuir a la mejora de la educación. Y ya podemos afirmar que en este proceso es imprescindible conocer cómo funciona el cerebro humano.

Existe una gran diversidad de temas tratados en las 15 conferencias programadas (ver programa completo en los enlaces finales), desde aspectos básicos del aprendizaje y la memoria o sobre educación socioemocional,  hasta aplicaciones prácticas en el aula de la neuroeducación o de las disciplinas artísticas como en el caso concreto del teatro. Este año se incorpora la novedad de un simposio en el que se presentan investigaciones relacionadas con las neurociencias en ese contexto tan importante que constituye la educación infantil.

Estamos orgullosos de poder difundir estas jornadas que representan la esencia del nuevo paradigma educativo y en las que confluyen tanto los contenidos teóricos suministrados por los neurocientíficos desde el laboratorio como los prácticos aportados por los pedagogos en el aula. Y es la comprensión y la correcta transmisión de este lenguaje interdisciplinar el que debe conformar y hacer avanzar a esta nueva disciplina que es la neuroeducación.  Os animamos a participar en este evento que resulta imprescindible para todo aquel que piense que una nueva educación es posible. Y no olvidemos que, como dice el proverbio africano que ha popularizado Jose Antonio Marina, “para educar a un niño hace falta la tribu entera”. Sigamos sumando.

Los enlaces de contacto son los siguientes:

http://www.educacionyneurociencias.cl/

http://inscripciones.med.uchile.cl/neurociencias/index.html

Programa Preliminar VII Jornada 

Libro de resúmenes

¿Qué esperas de un buen profesor?

Los grandes profesores siempre han entendido que su verdadero papel

 no es enseñar asignaturas, sino instruir a los alumnos. La tutela  y el

entrenamiento son el pulso vital de un sistema educativo vivo.

Ken Robinson

Cuenta Ian Gilbert que cuando en las investigaciones se les pregunta a los niños qué esperan de un buen profesor, aparecen de forma predominante en las respuestas el sentido del humor y la coherencia. Para justificar la importancia de generar diferentes emociones positivas en el aula para motivar y facilitar el aprendizaje del alumnado, el propio autor comenta: “el suspense, la intriga, la curiosidad, la novedad, la sorpresa, el sobrecogimiento, la pasión, la compasión, la empatía, conseguir objetivos, el descubrimiento, la competición, la superación de obstáculos, los logros, la sensación de avanzar … todo esto desempeña un papel fundamental para abrir el cerebro del aprendizaje” (Gilbert, 2005). En definitiva, seguimos hablando de la importancia decisiva que tienen las emociones en la educación y de la necesidad imperiosa de conciliar el conocimiento con el entretenimiento, o lo que es lo mismo, de armonizar el cerebro racional con el emocional.

En un experimento muy famoso, los investigadores mostraron cortometrajes de profesores a alumnos para que éstos evaluaran a aquellos únicamente a través de las imágenes observadas. A los pocos segundos de ver al profesor, estos alumnos lo valoraban de forma parecida a otros que ya habían estado un semestre en clase con él (Ambady y Rosenthal, 1993). A parte de demostrar este estudio la capacidad del alumno para detectar con rapidez qué profesor puede ser beneficioso para acompañar su proceso de desarrollo y aprendizaje, revela la importancia de la comunicación no verbal en las relaciones en el aula y, en definitiva, del ingrediente emocional. El buen profesor muestra expectativas positivas a sus alumnos y éstos son capaces de captarlas obteniendo mejoras académicas (efecto Pigmalión positivo).

¿Qué piensan los alumnos?

Quisimos plantear la cuestión que da título al presente artículo a un grupo de 39 alumnos de primero de bachillerato (etapa preuniversitaria en España). Para no condicionar las contestaciones, no se les facilitó ningún tipo de respuesta orientativa, aunque se les pidió que dieran tres, como máximo, que ellos creyeran que caracterizan a un buen profesor. Las respuestas fueron las siguientes:

Qué esperas de un buen profesor

Como observamos en el gráfico, los alumnos creen que la competencia profesional del profesor no se restringe a las cuestiones meramente académicas  (conoce su materia) sino que, aun siendo importantes, han de ser complementadas por otras relacionadas con aspectos socioemocionales, entre los que destacan la necesidad de mantener una relación empática (se preocupa por el alumno), entender las problemáticas del adolescente actual tanto a nivel personal como académico (es comprensivo), u otros relacionados con el propio carácter (muestra entusiasmo o es simpático).

Lo cierto es que el profesor no puede estar margen de la opinión de sus alumnos y no puede plantear los procesos de enseñanza y aprendizaje sin tener en cuenta sus particularidades o no ser sensible a la diversidad.

El buen profesor desde la neuroeducación

Conoce su materia y reflexiona sobre ella

El buen profesor conoce bien la materia que imparte y es capaz de reflexionar sobre qué es lo importante saber en esa disciplina (Bain, 2007). Ello le permite organizar las clases de forma adecuada optimizando la atención del alumno que sabemos sigue procesos cíclicos.

Inspira

El buen profesor es inspirador y transmite entusiasmo por lo que hace, fomentando un aprendizaje significativo. Es capaz de generar un contagio emocional en el aula que facilita un aprendizaje por imitación adecuado a través de la activación del sustrato cerebral que nos mantiene conectados, las neuronas espejo.

Da autonomía

Uno de los grandes objetivos de la educación debe ser el de fomentar la autonomía del alumno haciéndole participar en el proceso. A través de su motivación intrínseca, el alumno ha de responsabilizarse de su aprendizaje (Gerver, 2011). Y para que se dé esto, en el proceso inicial, la neurociencia ha desvelado la importancia de despertar la curiosidad (el lóbulo frontal se activa más ante una tarea novedosa) para así, mediante el estímulo emocional adecuado, facilitarse la atención necesaria para el aprendizaje (Mora, 2013).

Propone retos adecuados

El buen profesor descubre y estimula las fortalezas de sus alumnos, siendo capaz de proponer retos adecuados. Para ello es imprescindible tener en cuenta los conocimientos previos del alumno y ahí desempeña un papel importante la memoria. Cada nueva idea debe construirse sobre lo que ya se conoce, fomentándose así la comprensión a través de ejemplos reales y sus correspondientes comparaciones (Willingham, 2011).

Fomenta la creatividad

Pero sólo con la memoria no es suficiente. Ante un futuro incierto, es fundamental enseñar estrategias que permitan un pensamiento creativo, crítico y flexible. El buen profesor sabe ceder el protagonismo al alumno suscitando procesos de investigación  a través de las preguntas adecuadas y aceptando diferentes formas de resolver los problemas.

Acepta el error

El error forma parte del proceso de aprendizaje y ha de ser aceptado de forma natural. El cerebro, que tiende a justificar las creencias previas (disonancia cognitiva) requiere del error para progresar; la equivocación nos permite acercarnos al éxito de una idea (Forés y Ligioiz, 2009). La propia plasticidad cerebral conlleva el proceso de aprendizaje continuo.

Tiene  vocación

El buen profesor disfruta de su profesión, se responsabiliza de la misma y asume su enorme trascendencia, reflexiona sobre las prácticas educativas partiendo de la base  de que el aprendizaje es un proceso complejo, se adentra en el futuro a través de una formación continua y comparte. Como dijo Manfred Spitzer, el profesor es el instrumento didáctico más importante (Spitzer, 2005).

Y sobre todo, mira con afecto a sus alumnos

El alumno necesita ser reconocido. Para ello, es fundamental elogiarlo por su esfuerzo y no por sus capacidades, activándose así el sistema de recompensa cerebral asociado a la dopamina. El buen profesor interactúa de forma adecuada con el alumno, es accesible y agradable. Y sabe que la educación restringida a la transmisión de conocimientos académicos es insuficiente, es decir, que es imprescindible una educación socioemocional que forme personas íntegras capaces de generar un futuro mejor.

Conclusiones finales

En el proceso de mejora de las prácticas educativas entendemos que es esencial tener en cuenta la opinión de los alumnos. En cuanto al papel que desempeña el profesor, lo que lo alumnos nos responden está en consonancia con lo que sabíamos, esto es,  que el profesor que dejó huella en nosotros fue por cuestiones emocionales. Ese buen profesor seguramente era exigente, pero tenía grandes expectativas sobre sus alumnos y eso posibilitó la necesaria motivación.

En los tiempos actuales en los que nos planteamos una transformación en la profesión docente y un cambio de paradigma en la educación, resulta imprescindible tanto para el profesor como para el alumno conocer cómo funciona el cerebro humano. La excelencia educativa pasa por concretar las finalidades del aprendizaje, que por supuesto ha der significativo, y disponer de los conocimientos científicos que nos suministra la neuroeducación sobre cómo aprendemos. Y en este camino hacia la mejora de la práctica educativa, el rol que desempeña el nuevo y renovado profesor es fundamental. Ken Robinson lo resume muy bien (Robinson, 2011): “Los verdaderos desafíos a los que se enfrenta la educación sólo se solucionarán confiriendo el poder a los profesores creativos y entusiastas y estimulando la imaginación y la motivación de los alumnos”.

Jesús C. Guillén

Bibliografía

1. Ambady, N. & Rosenthal, R. (1993): “Half a minute: Predicting teacher evaluations from thin slices of nonverbal behavior and physical attractiveness”. Journal of Personality and Social Psychology, 64.

2. Bain, Ken (2007). Lo que hacen los mejores profesores universitarios. Universitat de Valencia. Sevei de Publicacions.

3. Forés, Anna, Ligioiz, Marta (2009). Descubrir la neurodidáctica. UOC.

4. Gerver, Richard (2012). Crear hoy la escuela del mañana. Ediciones SM.

5. Gilbert, Ian (2005). Motivar para aprender en el aula. Las siete claves de la motivación escolar. Paidós.

6. Mora, Francisco (2013). Neuroeducación: sólo se puede aprender aquello que se ama. Alianza Editorial.

7. Robinson, Ken (2011). El elemento: descubrir tu pasión lo cambia todo. Grijalbo.

8. Spitzer, Manfred (2005). Aprendizaje: neurociencia y la escuela de la vida. Omega.

9. Willingham, Daniel (2011). ¿Por qué a los niños no les gusta ir a la escuela? Graó.

Neuromitos en la educación

Somos conscientes que las investigaciones neurocientíficas han aportado gran información sobre cómo aprende el cerebro y que ésta va a afectar al desarrollo futuro de la educación. Sin embargo, resulta sencillo fomentar malentendidos en la transmisión de estos conocimientos desde la neurociencia hacia la educación. Se requiere un diálogo interdisciplinar que permita utilizar un vocabulario común entre los profesionales de ambas disciplinas y así traspasar de forma adecuada la información del laboratorio al aula. Cuando no ha ocurrido esto, han aparecido errores de interpretación de los descubrimientos científicos que han generado los llamados neuromitos. En el siguiente artículo, comparamos los resultados obtenidos por los profesores en un estudio de investigación reciente sobre el cerebro, con una pequeña investigación propia sobre esos conocimientos en el caso de un grupo de estudiantes adolescentes. El análisis de los resultados demuestra la necesidad de mejorar los conocimientos generales sobre el cerebro, tanto en el profesorado como en el alumnado, para optimizar los procesos de enseñanza y aprendizaje. Y esto se conseguirá mejorando la comunicación interdisciplinar entre los neurocientíficos y los educadores.

Neuromito

A menudo, la práctica educativa se ve perjudicada por creencias de los profesores sobre el cerebro que divergen de las demostradas por la neurociencia. El proyecto Brain and Learning de la OCDE (2002), que analizó gran cantidad de conceptos erróneos sobre la mente y el cerebro que habían aparecido en contextos fuera de la comunidad científica, definió  neuromito como “una concepción errónea generada por un malentendido, una mala interpretación o una cita equivocada de datos científicamente establecidos para justificar el uso de la investigación cerebral en la educación y otros contextos”. Analicemos dos casos concretos:

1. Sólo usamos el 10% de nuestro cerebro

El cerebro es un órgano complejo que es moldeado por la selección natural. Representa un porcentaje mínimo del peso total del cuerpo humano (en torno al 2%), pero consume aproximadamente un 20% de la energía disponible (Della Chiesa, 2007). Es evidente que con este gasto energético la evolución no podría haber permitido el desarrollo de un órgano con un 90% inútil. Las modernas técnicas de visualización cerebral han demostrado que la actividad cerebral es del 100 %, aunque la activación de las diferentes regiones cerebrales al realizar una tarea es desigual y la energía invertida es mayor en procesos de aprendizaje que cuando se domina la tarea.

2. “Cerebro izquierdo” versus “cerebro derecho”

Este neuromito indujo a creer que se debía enseñar a los niños según hubieran nacido con una predominancia de los hemisferios cerebrales, el izquierdo o el derecho, para así facilitar el aprendizaje a través de las preferencias naturales de los alumnos. Sin embargo, la imaginería cerebral demuestra que usamos ambos hemisferios de forma integrada. El cerebro es único y existe una transferencia de información entre los dos hemisferios a través de las fibras nerviosas que constituyen el cuerpo calloso. Por ejemplo, regiones de los dos hemisferios se activan y trabajan conjuntamente al identificar números (Dehaene, 1997) o en tareas relacionadas con el lenguaje (Seger, 2000).

Neuromitos en la escuela

En un estudio reciente (Dekker, 2012) se analizaron los conocimientos generales sobre el cerebro y la existencia de neuromitos entre profesionales de la educación del Reino Unido y Holanda que estaban interesados en las aplicaciones de la neurociencia en el aula. En concreto, la muestra fue de 242 profesores, mayoritariamente de primaria y secundaria, que debieron responder si eran ciertas o falsas 32 cuestiones (15 de ellas neuromitos) sobre el cerebro y su influencia en el aprendizaje. Los resultados demostraron que, en promedio, los profesores conocían la mitad de los neuromitos presentados (51%) y respondieron correctamente un 70% de las cuestiones generales. Asimismo, los resultados en las cuestiones generales fueron mejores en los profesores que leían publicaciones científicas, sin embargo, éstos eran más proclives a creer en los neuromitos.

Basándonos en el estudio anterior, hemos escogido 20 cuestiones de las planteadas en esa investigación y las hemos propuesto (con pequeñas adaptaciones) a 39 alumnos del bachillerato de las modalidades de ciencias (etapa preuniversitaria en España). El cuestionario, en el que aparecen entre paréntesis los porcentajes de aciertos de los alumnos, es el siguiente (proponemos al lector su realización):

Responde si son correctas (SÍ) o no lo son (NO) las siguientes afirmaciones:
1) Sólo usamos el 10 % de nuestro cerebro.  (31%)
2) El aprendizaje de la lengua materna ha de ser anterior al aprendizaje de una segunda lengua. En caso contrario, ninguna de las dos lenguas se aprenderá correctamente. (69%)
3) Hay periodos críticos en la infancia después de los que ciertas cosas ya no podrán aprenderse.  (58%)
4) La capacidad mental es heredada y no puede ser cambiada por el entorno o la experiencia.  (97%)
5) El aprendizaje se da por modificación de las conexiones neurales del cerebro.  (89%)
6) Los ritmos circadianos (reloj corporal) cambian durante la adolescencia, originando cansancio en los alumnos durante las primeras clases del horario escolar.  (54%)
7) El ejercicio físico mejora las funciones mentales.  (90%)
8) Los problemas de aprendizaje asociados a diferencias de desarrollo en las funciones cerebrales no pueden remediarse mediante la educación.  (79%)
9) Hay periodos sensibles en la infancia en los que es más fácil aprender cosas.  (97%)
10) Cuando dormimos cesa la actividad cerebral.  (87%)
11) La producción de nuevas conexiones cerebrales continúa en la vejez.  (62%)
12) El éxito académico puede verse afectado por saltarse el desayuno.  (69%)
13) El cerebro de los chicos es mayor que el de las chicas.  (44%)
14) Cuando una región cerebral está dañada otras partes del cerebro pueden asumir su función.  (30%)
15) Los hemisferios derecho e izquierdo del cerebro trabajan conjuntamente.  (37%)
16) El aprendizaje no se debe a la aparición de nuevas células en el cerebro.  (59%)
17) Se mejora el aprendizaje individual si la información aportada se da en el estilo de aprendizaje preferente (visual, auditivo,…).  (3%)
18) La ingesta continuada de bebidas con cafeína reduce la atención.  (62%)
19) Usamos nuestro cerebro las 24 horas del día.  (85%)
20) Los cerebros de los chicos y las chicas se desarrollan a la vez.  (87%)

.

Para el que requiera información sobre las respuestas: son correctas las cuestiones 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 18, 19 y son falsas las cuestiones 1, 2, 3, 4, 8, 10, 17, 20 (asumimos que pueda existir cierta ambigüedad en la interpretación de alguna de ellas, por lo que sugerimos al amable lector que nos lo haga saber).

En la gráfica siguiente, mostramos la comparativa de los aciertos en cada una de las cuestiones propuestas  a los alumnos. En rojo aparecen las cuestiones generales sobre el cerebro, mientras que en negro se muestran los seis neuromitos planteados:Neuromitos en alumnos

Como observamos, los resultados generales son bastante satisfactorios, teniendo en cuenta que estos alumnos no poseen conocimientos específicos sobre neurociencia. La excepción la encontramos en la cuestión 17 (3% de aciertos) en la que existe la creencia generalizada errónea de que se puede mejorar el aprendizaje individual si la información se aporta en el estilo preferente (visual, auditivo, etc.). Otras cuestiones en las que se obtienen bajos porcentajes de aciertos son la 1 y 14 (en ambas un 30% de aciertos), lo que podemos justificar por la idea muy arraigada que existe entre el alumnado de que usamos sólo el 10% del cerebro y por el desconocimiento sobre la diversidad funcional de determinadas regiones cerebrales, respectivamente.

En el siguiente gráfico, comparamos los resultados obtenidos por los alumnos en las cuestiones referidas a neuromitos (1, 2, 3, 8, 17 y 18) en nuestra investigación propia, con los obtenidos por los profesores en el estudio de Dekker (UK hace referencia a los profesores del Reino Unido y NL a los de Holanda). Hemos de destacar que en el estudio de Dekker se permitieron tres opciones en las respuestas (verdadero, falso o no se sabe), mientras que en nuestro caso sólo se dieron las opciones de verdadero o falso:

Neuromitos en profesores y alumnos

Lo primero que observamos es que no existen diferencias muy grandes entre los porcentajes de aciertos de los alumnos y los de los profesores. Esto reafirma la postura que hemos defendido a menudo de que el profesor no ha de ser un transmisor sino un gestor de conocimientos (y mejor de habilidades).

Cabe destacar los resultados correspondientes a la cuestión 17 (3%, 4% y 3% de aciertos, respectivamente). En el ámbito educativo se llegó a categorizar a los niños según su modalidad sensorial preferida para aprender: visuales, auditivos o cinestésicos. Como consecuencia de ello, debía enseñarse atendiendo a los estilos de aprendizaje preferentes (en algunas escuelas se llegó a etiquetar a los niños con las identificaciones V, A y C). Sin embargo, la propia interconectividad cerebral hace que las distintas modalidades no se procesen de forma independiente en diferentes regiones cerebrales (Geake, 2008).

Conclusiones

Los datos sugieren que, frecuentemente, la información transmitida desde la neurociencia no es interpretada de forma correcta por la educación. Algunos autores proponen la necesidad de que existan intermediarios debidamente formados que sean los encargados de transmitir estos conocimientos y así permitir a los científicos restringirse a sus investigaciones en el laboratorio (Goswani, 2006), dado que las aplicaciones educativas no forman parte de las prioridades de los neurocientíficos. Este enfoque interdisciplinar parece imprescindible porque la forma de trabajar en ambas disciplinas es diferente: en neurociencia se utilizan análisis cuantitativos (los datos provenientes de las imágenes cerebrales son estadísticos), mientras que la investigación en educación prioriza el análisis cualitativo y los significados derivados. Esta investigación neuroeducativa interdisciplinar debería complementar y adecuar los conocimientos actuales y poder así relacionarlos con las aplicaciones prácticas que pretenden explicar. Muchas de las cosas que se hacen en la escuela son contradictorias con lo que sabemos actualmente que es mejor para el cerebro en el contexto del aprendizaje, como por ejemplo, lo relacionado con los métodos de enseñanza, el sueño o los hábitos nutricionales (Tokuhama, 2011).

Paul Howard Jones propone tres preguntas sencillas que todo educador debería plantearse si quiere aplicar conocimientos basados en el aprendizaje cerebral (Howard Jones, 2011):

1. ¿Cuáles son los principios científicos?

2. ¿Cómo se evaluó la idea en términos científicos?

3. ¿Dónde se han publicado y evaluado estos principios y evaluaciones?

Cualquier duda en la respuesta a alguna de estas preguntas debería suscitar sospechas.

La conclusión es clara, no se pueden aplicar programas educativos, como se ha hecho frecuentemente, que pretendan estar basados en los descubrimientos aportados por la neurociencia si realmente no existen evidencias empíricas sólidas.

En lo referente a los alumnos, explicar cómo funciona el cerebro es especialmente útil en aquellos que creen que no poseen la capacidad intelectual adecuada y que, como consecuencia de ello, hagan lo que hagan no podrán cambiar. Han de conocer por qué el cerebro no es inmutable y cómo la plasticidad cerebral puede conllevar la mejora de cualquiera de ellos, es decir, una puerta abierta a la esperanza con todo lo que ello implica a nivel emocional. El cociente intelectual no es fijo y no existe un determinismo genético sino ciertos condicionamientos y predisposiciones que pueden cambiar en respuesta a las experiencias de aprendizaje vividas.

Conocer el funcionamiento del cerebro, órgano responsable del aprendizaje, resultará imprescindible para optimizar la pedagogía del futuro. Todo en beneficio de una mejor educación que se ha de consolidar atendiendo a unos principios éticos y morales adecuados.

Jesús C. Guillén

Bibliografía:

1. Dehaene, Stanislas, The number sense: how the mind create mathematics. Oxford University Press, 1997.

2. Dekker, S., Lee, C.L., Howard-Jones, P., Jolles, J. (2012): ”Neuromyths in education: prevalence and predictors of misconceptions among teachers”, Frontiers in Psychology, 3.

3. Della Chiesa, Bruno et al., Understanding the brain: the birth of a learning science, OECD, 2007.

4. Geake, J. G. (2008): “Neuromythologies in education”, Educational Research, 50.

5. Goswani, U. (2006): “Neuroscience and education: From research to practice?”, Nature Reviews Neuroscience, 7.

6. Howard Jones, Paul, Investigación neuroeducativa, La Muralla, 2011.

7. Seger, C. et al. (2000): “Functional magnetic resonance imaging evidence for right-hemisphere involvement in processing of unusual semantic relationships”, Neuropsychology, 14.

8.Tokuhama-Espinosa, Tracey, Mind, brain and education science, Norton & Company, 2011.

Para saber más:

http://www.experientiadocet.com/2012/11/sabes-distinguir-un-neuromito-mas-del.html

http://www.edutopia.org/blog/neuroscience-higher-ed-judy-willis

http://www.oecd.org/edu/ceri/centreforeducationalresearchandinnovationceri-brainandlearning.htm

https://escuelaconcerebro.wordpress.com/2012/12/27/neuroeducacion-estrategias-basadas-en-el-funcionamiento-del-cerebro/

Categorías:Neurodidáctica Etiquetas: ,

Neuroeducación: estrategias basadas en el funcionamiento del cerebro

27 diciembre, 2012 133 comentarios

La información que tenemos sobre el cerebro humano, órgano responsable del aprendizaje, se ha visto claramente incrementada debido al desarrollo de las nuevas técnicas de visualización cerebral. Como consecuencia de estas investigaciones recientes, aparece una nueva disciplina en la que confluyen los conocimientos generados por la neurociencia, la educación y la psicología que nos pueden aportar información significativa sobre el proceso de enseñanza y aprendizaje. La neuroeducación consiste en aprovechar los conocimientos sobre el funcionamiento cerebral para enseñar y aprender mejor.

En el siguiente artículo mostramos ocho estrategias fundamentales basadas en el funcionamiento del cerebro que tienen un soporte experimental definido y que resultan imprescindibles en la práctica educativa. En cada una de ellas hemos seleccionado un artículo de investigación relevante que constituye una evidencia empírica sólida y aportamos una serie de sugerencias prácticas fáciles de aplicar.

1. NUESTRO CEREBRO CAMBIA Y ES ÚNICO

El cerebro humano es extraordinariamente plástico, pudiéndose adaptar su actividad y cambiar su estructura de forma significativa a lo largo de la vida, aunque es más eficiente en los primeros años de desarrollo (periodos sensibles para el aprendizaje). La experiencia modifica nuestro cerebro continuamente fortaleciendo o debilitando las sinapsis que conectan las neuronas, generando así el aprendizaje que es favorecido por el proceso de regeneración neuronal llamado neurogénesis. Desde la perspectiva educativa, esta plasticidad cerebral resulta trascendental porque posibilita la mejora de cualquier alumno y, en concreto, puede actuar como mecanismo compensatorio en trastornos del aprendizaje como la dislexia y el TDAH.

La prueba

Maguire, E. A. et al. (2000): “Navigation related structural change in the hippocampi of taxi drivers”, PNAS 97.

En este estudio se analizó el hipocampo de los taxistas de Londres, ciudad caracterizada por su amplio callejero. Se comprobó que el tamaño de esta región cerebral, implicada en el aprendizaje y la memoria espacial, era mayor en los taxistas que en el resto de conductores. Además, el tamaño del hipocampo de los taxistas más expertos era mayor que el de los menos expertos.

Implicaciones educativas

El hecho de que cada cerebro sea único y particular (aunque la anatomía cerebral sea similar en todos los casos) sugiere la necesidad de tener en cuenta la diversidad del alumnado y ser flexible en los procesos de evaluación. Asumiendo que todos los alumnos pueden mejorar, las expectativas del profesor hacia ellos han de ser siempre positivas y  no  le han de condicionar actitudes o comportamientos pasados negativos.

En cuanto al tratamiento de los trastornos del aprendizaje, hay diferentes programas informáticos que han demostrado su utilidad en la mejora de determinadas capacidades cognitivas como la memoria o la atención. En concreto, Fast ForWord de Scientific Learning Corporation (avalado por Michael Merzenich) es un programa  para estudiantes disléxicos que ha ayudado a compensar las dificultades que tienen con el procesamiento fonológico (ver figura 1). Este tipo de entrenamiento continuo mejora la comprensión del lenguaje, la memoria y la lectura.

Dyslexic children increases after remediation

Fig.1 En las imágenes superiores (A) se compara la activación de regiones que intervienen en el procesamiento fonológico en niños normales y en niños disléxicos. En las inferiores (B) se muestra la mayor activación de estas regiones en los niños disléxicos después del período de entrenamiento. (Temple, 2003).

.

Para saber más:

https://escuelaconcerebro.wordpress.com/2012/10/04/neuroplasticidad-un-nuevo-paradigma-para-la-educacion/

2. LAS EMOCIONES SÍ IMPORTAN

Las emociones son reacciones inconscientes que la naturaleza ha ideado para garantizar la supervivencia y que, por nuestro propio beneficio, hemos de aprender a gestionar (no erradicar). La neurociencia ha demostrado que las emociones mantienen la curiosidad, nos sirven para comunicarnos y son imprescindibles en los procesos de razonamiento y toma de decisiones, es decir, los procesos emocionales y los cognitivos son inseparables (Damasio, 1994). Además, las emociones positivas facilitan la memoria y el aprendizaje (Erk, 2003; ver figura 2), mientras que en el estrés crónico la amígdala (una de las regiones cerebrales clave del sistema límbico o “cerebro emocional”) dificulta el paso de información del hipocampo a la corteza prefrontal, sede de las funciones ejecutivas.

Si entendemos la educación como un proceso de aprendizaje para la vida, la educación emocional resulta imprescindible porque contribuye al bienestar personal y social.

Emotions and memoryFig.2 Activación de distintas regiones cerebrales, en un contexto emocional positivo, que facilitan la memoria. Son los giros derechos: lingual (GL), hipocampal posterior (pGH), hipocampal anterior (aGH) y fusiforme (GF).

.

La prueba

Informe Fundación Botín (2008): Educación emocional y social. Análisis internacional. Santander, Fundación Marcelino Botín.

En este estudio internacional basado en cientos de investigaciones en las que han participado más de 500.000 estudiantes de educación infantil, primaria y secundaria se ha demostrado que los programas de educación emocional sistemáticos afectan al desarrollo integral de los alumnos: disminuyen los problemas de disciplina, están más motivados para el estudio, obtienen mejores resultados académicos, muestran actitudes más positivas y mejoran sus relaciones.

Implicaciones educativas

Los docentes hemos de generar climas emocionales positivos que faciliten el aprendizaje y la seguridad de los alumnos. Para ello hemos de mostrarles respeto, escucharles e interesarnos (no sólo por las cuestiones académicas). La empatía es fundamental para educar desde la comprensión.

Aunque hay muchas actividades en las que se pueden fomentar las competencias emocionales a través de un proceso continuo (se pueden utilizar diferentes recursos didácticos para suscitar la conciencia emocional como videos, fotografías, noticias, canciones, etc.), proponemos una relacionada con la lectura (Filella, 2010): se dedica un tiempo semanal en el aula a la lectura individual de textos que el alumno ha elegido según su propio interés (con el paso del tiempo se puede orientar hacia textos específicos). La lectura ha de ser en silencio y, posteriormente, se han de proponer actividades como resúmenes, dibujos, esquemas,… relacionados con la misma. Una forma sencilla de mejorar la atención, la comprensión, el aprendizaje y de fomentar emociones positivas en el alumnado.

Para saber más:

https://escuelaconcerebro.wordpress.com/2013/03/01/educacion-emocional-y-social/

3. LA NOVEDAD ALIMENTA LA ATENCIÓN

La neurociencia ha demostrado la importancia de hacer del aprendizaje una experiencia positiva y agradable. Sabemos que estados emocionales negativos como el miedo o la ansiedad dificultan el proceso de aprendizaje de nuestros alumnos. Pero, en la práctica cotidiana, han predominado los contenidos académicos abstractos, descontextualizados e irrelevantes que dificultan la atención sostenida, que ya de por sí es difícil de mantener durante más de quince minutos (Jensen, 2004). A los seres humanos nos cuesta reflexionar, pero somos curiosos por naturaleza y es esta curiosidad la que activa las emociones que alimentan la atención y facilitan el aprendizaje.

La prueba

Waelti, P.; Dickinson, A.; Schultz, W. (2001): “Dopamine responses comply with basic assumptions of formal learning theory”, Nature 412.

Este estudio demuestra que para optimizar el aprendizaje no es importante la recompensa sino lo inesperado de la misma. Analizando la respuesta de neuronas dopaminérgicas se comprobó que se activaban cuando el organismo tenía una determinada expectativa y la respuesta conductual era mejor de lo que se esperaba. De lo anterior se concluye  que,  tanto en el nivel neuronal como en el conductual, lo importante para el aprendizaje es la anticipación de la recompensa y no el simple premio.

Implicaciones educativas

No es suficiente que pidamos a los alumnos que presten atención (“Mamá, no es que tenga déficit de atención, es que no me interesa” se leía en la camiseta de un reconocido investigador) sino que hemos de utilizar estrategias prácticas que fomenten la creatividad y que permitan a los alumnos participar en el proceso de aprendizaje sin ser meros elementos pasivos del mismo.

Para ello, es útil aprovechar los primeros minutos de la clase para enseñar los contenidos más importantes para luego seguir con bloques que no superen los diez o quince minutos y así poder optimizar la atención. Al final de cada bloque se puede dedicar un tiempo para reflexionar sobre lo analizado o, simplemente, hacer un pequeño parón para afrontar el siguiente. Todo ello debería ser complementado por un profesor activo que se mueve por el aula y cambia el tono de voz porque los contrastes sensoriales atraen la atención del alumno.

Para saber más:

https://escuelaconcerebro.wordpress.com/2012/03/04/la-atencion-un-recurso-limitado/

4. EL EJERCICIO FÍSICO MEJORA EL APRENDIZAJE

La práctica regular de la actividad física (principalmente el ejercicio aeróbico) promueve la neuroplasticidad y la neurogénesis en el hipocampo, facilitando la memoria de largo plazo y un aprendizaje más eficiente. Además, no sólo aporta oxígeno al cerebro optimizando su funcionamiento, sino que genera una respuesta de los neurotransmisores noradrenalina y dopamina que intervienen en los procesos atencionales. El ejercicio físico mejora el estado de ánimo (la dopamina interviene en los procesos de gratificación) y reduce el temido estrés crónico que repercute tan negativamente en el proceso de aprendizaje.

La prueba

Aberg M. et al. (2009), “Cardiovascular fitness is associated with cognition in young adulthood”, PNAS.

Se realizó un estudio longitudinal en el que participaron más de un millón de suecos. Se demostró que las aptitudes físicas entre los 15 y los 18 años predecían la capacidad intelectual a los 18 años de edad, medida con una serie de pruebas de lógica, verbales y visuoespaciales (ver figura 3). Además, se comprobó que la resistencia aeróbica durante la adolescencia guarda una relación directa con el nivel socioeconómico y los logros académicos en la edad adulta.

Levels of intelligence scores by cardiovascular fitness

Fig. 3 Crecimiento de la inteligencia global (eje vertical) en relación al aumento  de la resistencia aeróbica (eje horizontal)

.

Implicaciones educativas

Los estudios demuestran que  se han de potenciar las clases de educación física, dedicarles el tiempo suficiente y no colocarlas al final de la jornada académica como se hace normalmente.

Se deberían fomentar las zonas de recreo al aire libre que permitan la actividad física voluntaria y aprovechar los descansos regulares para que los alumnos puedan moverse. Un simple ejercicio antes del comienzo de la clase mejora en los niños su predisposición física y psicológica hacia el aprendizaje, con mayor motivación y atención (Blakemore, 2011).

Junto a la actividad física, son muy importantes también la adecuada hidratación (se ha de permitir a los niños beber agua en clase), hábitos nutricionales apropiados y dormir las horas necesarias (se sabe que los adolescentes necesitan dormir más). Por ello resulta conveniente la enseñanza de estos hábitos no sólo a los alumnos sino también a los padres.

Para saber más:

https://escuelaconcerebro.wordpress.com/2012/09/18/importancia-del-ejercicio-fisico-en-la-educacion/

5. LA PRÁCTICA CONTINUA PERMITE PROGRESAR

El cerebro conecta la nueva información con la ya conocida, por lo que aprendemos mejor y más rápidamente cuando relacionamos la información novedosa con los conocimientos ya adquiridos. Para optimizar el aprendizaje, el cerebro necesita la repetición de todo aquello que tiene que asimilar. Es mediante la adquisición de toda una serie de automatismos como memorizamos, pero ello requiere tiempo. La automatización de los procesos mentales hace que se consuma poco espacio de la memoria de trabajo (asociada a la corteza prefrontal, sede de las funciones ejecutivas) y sabemos que los alumnos que tienen más espacio en la memoria de trabajo están más dotados para reflexionar (Willingham, 2011).

La prueba

Bahrick, H.P.; Hall, L.K. (1991): “Lifetime maintenance of high school mathematics content”. Journal of Experimental Psychology: General, 120.

En este estudio en el que participaron más de mil personas se realizó una prueba de álgebra a personas de distintas edades que habían hecho un curso entre un mes y cincuenta y cinco años antes (eje horizontal en figura 4). Como se observa en el gráfico inferior, las calificaciones se dividieron en cuatro grupos, atendiendo al nivel de matemáticas mostrado (la línea inferior corresponde a personas con nivel más básico mientras que la superior corresponde a las personas con nivel más avanzado). Los principiantes obtuvieron porcentajes de respuestas correctas (eje vertical) más bajos y conforme pasó más tiempo entre la prueba y el último curso de álgebra realizado (entre menos de un año y 55 años) los resultados fueron peores. Sin embargo, los participantes con nivel más avanzado recordaban el álgebra de la misma forma con el paso de los años (curva prácticamente horizontal), lo que indicaba que el tiempo que se pasaba estudiando la materia era el que determinaba lo que se iba a recordar de la misma.

Lifetime maintenance of high school mathematics content

                                                                                Fig.4

.

Implicaciones educativas

Los docentes hemos de ayudar a adquirir y mejorar las competencias necesarias según la práctica. Por ejemplo, la práctica continua de cálculos aritméticos y la memorización de la tabla de multiplicar es imprescindible en la resolución de muchos problemas matemáticos o el conocer de memoria las reglas ortográficas es imprescindible para escribir con corrección. El problema reside en que muchas veces la práctica intensiva puede resultar aburrida por lo que sería aconsejable espaciar la práctica en el tiempo (para ello es imprescindible el currículo espiral) y variarla con otras actividades.

Para saber más:

https://escuelaconcerebro.wordpress.com/2012/07/13/la-memoria-un-recurso-fundamental-2/

6. EL JUEGO NOS ABRE LAS PUERTAS DEL MUNDO

El juego constituye un mecanismo natural arraigado genéticamente que despierta la curiosidad, es placentero y permite descubrir destrezas útiles para desenvolvernos en el mundo. Los mecanismos cerebrales innatos del niño le permiten, a los pocos meses de edad, aprender jugando. Se libera dopamina que hace que la incertidumbre del juego constituya una auténtica recompensa cerebral y que facilita la transmisión de información entre el hipocampo y la corteza prefrontal, promoviendo la memoria de trabajo. El juego constituye una necesidad para el aprendizaje que no está restringida a ninguna edad, mejora la autoestima, desarrolla la creatividad, aporta bienestar y facilita la socialización. La integración del componente lúdico en la escuela resulta imprescindible porque estimula la curiosidad y esa motivación facilita el aprendizaje.

La prueba

En el siguiente video se explica la investigación llevada a cabo por Roberto Colom y María Ángeles Quiroga en la que se demuestra  una correlación alta entre el rendimiento mostrado jugando a un videojuego conocido y el rendimiento en unos tests de aptitudes. Jugando durante 16 horas durante un mes aumenta la cantidad de materia gris de las voluntarias, que es un indicador del aumento en la capacidad cerebral, se mejora la coordinación entre regiones cerebrales, la comprensión verbal, el razonamiento o la percepción visual.

Implicaciones educativas

El juego motiva, ayuda a los alumnos a desarrollar su imaginación y a tomar mejores decisiones. Además, existe una gran variedad de juegos que mejoran la atención, uno de los factores críticos en el proceso de aprendizaje: ajedrez, rompecabezas, juegos compartidos, programas de ordenador,…Es cuestión de integrar adecuadamente el componente lúdico en la actividad diaria.

Para saber más:

http://www.edutopia.org/blog/video-games-learning-student-engagement-judy-willis

7. EL ARTE MEJORA EL CEREBRO

La neurociencia está demostrando  que las actividades artísticas (involucran a diferentes regiones cerebrales; ver figura 5), en particular la musical, promueven el desarrollo de procesos cognitivos.

Brain networks involved in various forms of the arts

                                                                                Fig.5

.

La instrucción musical en jóvenes mejora la capacidad intelectual como consecuencia de la plasticidad cerebral, sobretodo en aquellos con mayor interés y motivación hacia las actividades artísticas (Posner, 2008). Además, en algunos niños, aparecen correlaciones entre la práctica musical y la mejora en geometría o las capacidades espaciales cuando el entrenamiento es intenso. Por otra parte, el teatro o el baile desarrollan habilidades socioemocionales como la empatía y son beneficiosos para la memoria semántica. Por ejemplo, al hablar en público se genera noradrenalina, una sustancia que se sabe que interviene en los procesos relacionados con la atención, la memoria de trabajo o  el autocontrol.

La prueba

Wandell, B. et al. (2008): “Training in the arts, reading and brain imaging” en “Learning, arts and the brain: the Dana Consortium Report on Arts and Cognition”, Dana Press.

En un estudio con 49 niños de edades comprendidas entre 7 y 12 años se midieron los efectos de la educación artística (en concreto artes visuales, música, baile y teatro) en la capacidad y comprensión lectora. Y se comprobó que la mayor correlación se daba para el entrenamiento musical (ver figura 6):

Correlation between music and reading

Fig.6 En el eje horizontal aparecen las horas dedicadas al entrenamiento musical el primer año. En el eje vertical se muestra  la mejora en la capacidad lectora entre el primer año y el tercero.

.

Implicaciones educativas

La educación artística debe ser obligatoria. La instrucción musical o el teatro que tantas habilidades sociales, emocionales y cognitivas son capaces de desarrollar deberían de formar parte del currículo y no, como ocurre frecuentemente, quedar como actividades marginales.

Como ejemplo clásico de programa enfocado hacia la educación artística y que asume la multiplicidad de la inteligencia está el Arts Propel. Este programa  especializado en la música, el arte visual y la escritura creativa potencia la creatividad y su aplicación ha sido muy satisfactoria (http://www.pz.harvard.edu/research/PROPEL.htm)

Para saber más:

https://escuelaconcerebro.wordpress.com/2012/03/03/la-formacion-musical-produce-mejoras-cognitivas-en-ninos-menores-de-6-anos/

8. SOMOS SERES SOCIALES

Los humanos somos seres sociales porque nuestro cerebro se desarrolla en contacto con otros cerebros. El descubrimiento de las neuronas espejo resultó trascendental en este sentido porque estas neuronas motoras permiten explicar cómo se transmitió la cultura a través del aprendizaje por imitación y el desarrollo de la empatía, es decir, qué nos hizo realmente humanos. Se ha demostrado que los bebés con pocos meses de edad ya son capaces de mostrar actitudes altruistas (Warneken, 2007), por lo que hemos de evitar en la educación la propagación de conductas egoístas fruto de la competividad. El aprendizaje del  comportamiento cooperativo se da conviviendo en una  comunidad en la que impera la comunicación y en la que podemos y debemos actuar. Cuando se colabora se libera más dopamina y ya sabemos que este neurotransmisor facilita la transmisión de información entre el sistema límbico y el lóbulo frontal, favoreciendo la memoria a largo plazo y reduciendo la ansiedad.

La prueba

Rilling et al. (2002): “A neural basis for social cooperation”, Neuron, 35.

En este estudio se demostró en un grupo de 36 mujeres que cuando cooperaban (modelo del dilema del prisionero) se activaba el sistema de motivación y gratificación de la dopamina, reforzando el comportamiento cooperativo, generándose más altruismo y ayudando a aplazar la recompensa. La implicación de la corteza orbitofrontal en el proceso (ver figura 7) explica por qué a los niños les cuesta demorar la gratificación, dado que el proceso de maduración de esta región cerebral se alarga hasta pasada la adolescencia.

Orbitofrontal cortex and anteroventral striatum

 Fig. 7 Activación de la corteza orbitofrontal (izquierda) y del núcleo accumbens (derecha) durante la cooperación en el caso del dilema del prisionero.

.

Implicaciones educativas

La colaboración efectiva en el aula requiere algo más que sentar juntos a unos compañeros de clase. Los alumnos han de adquirir una serie de competencias básicas imprescindibles en la comunicación social como el saber escuchar o respetar la opinión divergente. Además, han de tener claro los beneficios de trabajar en grupo y saber cuáles son sus roles en el mismo.

La escuela ha de fomentar también la colaboración entre alumnos de distintos niveles y la compartición de conocimientos (por ejemplo, mediante presentaciones de trabajos de investigación de los alumnos), sin olvidar la realización de actividades interdisciplinares. Y no hemos de olvidar que la escuela ha de abrirse a toda la comunidad.

Para saber más:

http://www.radteach.com/page1/styled-8/index.html

CONCLUSIONES FINALES

Los nuevos tiempos requieren nuevas estrategias y los últimos descubrimientos que nos aporta la neurociencia cognitiva desvelan que la educación actual requiere una profunda reestructuración que no le impida quedarse desfasada ante la  reciente avalancha tecnológica. Aunque hemos de asumir que la educación no se restringe al entorno escolar, la escuela y los docentes hemos de preparar a los futuros ciudadanos de un mundo cambiante. Para ello, hemos de erradicar la enseñanza centrada en la transmisión de una serie de conceptos abstractos y descontextualizados que no tienen ninguna aplicación práctica. Nuestros alumnos han de aprender a aprender y la escuela ha de facilitar la adquisición de una serie de habilidades útiles que permitan resolver los problemas que nos plantee la vida cotidiana: un aprendizaje para la vida. Y para ello se requiere inteligencia principalmente socioemocional.

El aprendizaje se optimiza cuando el alumno es un protagonista activo del mismo, es decir, se aprende actuando. Y esto se facilita cuando es una actividad placentera y se da en un clima emocional positivo. Nuestro cerebro nos permite mejorar y aprender a ser creativos y es por todo ello que la neuroeducación resulta imprescindible.

Jesús C. Guillén

 

Bibliografía:

1. Blakemore, Sarah-Jayne;  Frith, Uta, Cómo aprende el cerebro, las claves para la educación,          Ariel, 2011.

2. Damasio, Antonio, El error de Descartes, Crítica, 2006.

3. Davidson, Richard, Begley, Sharon, El perfil emocional de tu cerebro, Destino, 2012.

4. Erlauer, Laura, The brain-compatible classroom, ASCD, 2003.

5. Erk, S. et al. (2003): “Emotional context modulates subsequent memory effect”. Neuroimage, 18.

6. Filella, G.; Bisquerra, R.(2010):”La educación emocional en secundaria” en La educación emocional en la práctica, Bisquerra R. (Coord.), Horsori.

7. Forés, Anna, Ligioiz, Marta, Descubrir la neurodidáctica, UOC, 2009.

8. Gardner, Howard, Inteligencias múltiples: la teoría en la práctica, Paidós, 1995.

9. Howard-Jones, Paul, Investigación neuroeducativa, Muralla, 2011.

10. Jensen, Eric, Cerebro y aprendizaje: competencias e implicaciones educativas, Narcea, 2004.

11. Jensen, E. (2010): “10 Most effective tips for using brain based teaching and learning”, http://www.ericjensen.com.

12. Lantieri, Linda, Inteligencia emocional infantil y juvenil, Aguilar, 2009.

13. Mora, F. (2011): “¿Qué son las emociones?” en ¿Cómo educar las emociones?, Cuadernos Faros 6.

14. Ortiz, Tomás, Neurociencia y educación, Alianza Edtorial, 2009.

15. Posner, M. et al. (2008): “How arts training influences cognition” en Learning, arts and the brain: the Dana Consortium on arts and cognition, Danna Press.

16. Sousa, D.(2011): “Mind, brain and education: the impact of educational neuroscience on the science of teaching”, Learning Landscapes 5.

17. Spitzer, Manfred., Aprendizaje: neurociencia y la escuela de la vida, Omega, 2005.

18. Temple, E. et al. (2003): “Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI”, PNAS 100.

19. Warneken F., Tomasello M., (2007):”Helping and cooperation at 14 months of age”, Infancy 11.

20. Willingham, Daniel, ¿Por qué a los niños no les gusta ir a la escuela?, Graó, 2011