Archivo

Posts Tagged ‘Clase magistral’

Aprendizaje basado en proyectos desde la neuroeducación

La educación eficaz siempre es un equilibrio entre rigor y libertad, tradición e innovación, el individuo y el grupo, la teoría y la práctica, el mundo interior y el que nos rodea.

Ken Robinson

Neuroeducación y neurodiversidad

Como sabéis, en Escuela con Cerebro nos gusta acercar la ciencia de forma divulgativa para que podamos conocer y reflexionar sobre cuestiones que pueden tener una incidencia educativa relevante. Y lo hacemos desde el enfoque multidisciplinar de lo que llamamos neuroeducación. Porque entendemos que ya existe la suficiente información que puede orientar una verdadera enseñanza basada en el cerebro. Conocemos, por ejemplo, muchas implicaciones educativas relacionadas con la emoción, la atención o la memoria, todos ellos factores críticos en el aprendizaje. O disponemos de suficientes evidencias empíricas que sugieren que el juego, el deporte, las artes o la educación socioemocional son imprescindibles para un buen desarrollo de las funciones ejecutivas del cerebro, las cuales inciden de forma directa en el rendimiento académico del alumno y su bienestar personal (Diamond y Ling, 2016). Todas ellas cuestiones capitales desde la perspectiva neuroeducativa.

Conocer cómo funciona nuestro cerebro, además de facilitar la necesaria mentalidad de crecimiento (ver figura 1), es fundamental para mejorar la educación. Un cerebro plástico que nos permite aprender durante toda la vida y que, a pesar de los patrones madurativos similares o de las regiones cerebrales que compartimos, es único, particular y diferente a los demás. Cuando se analizan los escáneres cerebrales, se comprueba que la gran mayoría de ellos (en torno al 90%) presentan anormalidades (Mazziotta et al., 2009). Es decir, lo del ‘cerebro normal’ es un mito y lo que prevalece a nivel cerebral es la anormalidad. Al igual que ocurre con los rostros, no existen dos cerebros idénticos. Básicamente -más allá de la genética-, porque no serán idénticas las experiencias pasadas vividas por esas personas. Y todo ello sugiere que, aunque podamos aprender cuestiones de forma parecida, puede variar el ritmo de aprendizaje o las necesidades que conectan el aprendizaje con nuestros conocimientos previos. Por lo tanto, resulta primordial atender la diversidad en el aula.

figura-1

Alumnos, profesores y falsas dicotomías

Desde el nacimiento estamos motivados para aprender. Disponemos de un sistema de recompensa cerebral asociado a las experiencias positivas y en continuo funcionamiento que nos motiva y nos permite aprender durante toda la vida. Porque cuando se suscita la curiosidad, se activan áreas de ese sistema en las que se sintetiza y libera el neurotransmisor dopamina y así se mejora la actividad del hipocampo, una región imprescindible para el aprendizaje. Por ejemplo, se demostró que la actividad electrodémica -una medida de la activación fisiológica- de un alumno del MIT (Instituto Tecnológico de Massachusetts) era mínima en el transcurso de la clase y muy parecida a la que mostraba cuando estaba viendo un programa de TV. Sin embargo, cuando era un protagonista activo de su aprendizaje, como al realizar una práctica en el laboratorio o un proyecto de trabajo, su actividad electrodérmica se incrementaba mucho (Poh et al., 2010). Esto nos recuerda las palabras del conocido divulgador científico, Pere Estupinyà, en el prólogo de nuestro libro Neuromitos en educación: el aprendizaje desde la neurociencia:

El Instituto Tecnológico de Massachusetts (MIT) es una de las mejores universidades del mundo. Sin embargo, sus alumnos están dejando de asistir a sus clases. ¿Por qué? Porque han encontrado formas más eficientes de optimizar su tiempo de estudio […] Algunos de los alumnos del MIT prefieren aprovechar los maravillosos laboratorios y los grupos de investigación de la universidad para realizar proyectos en grupo. Pueden construir robots o pensar en cómo crear una empresa; el hecho es que apasionándose por un tema específico y trabajando en equipo hacia un objetivo concreto aprenderán más que escuchando de manera pasiva a un profesor.

Y Estupinyá sabe de lo que habla porque realizó, recientemente, una estancia en el prestigioso MIT. Aunque tampoco conviene polarizar el mensaje. De hecho, las investigaciones de John Hattie basadas en el estudio de ya casi 1200 metaanálisis, revelan que la enseñanza directa tiene una incidencia alta sobre el rendimiento académico y aprendizaje del alumnado (tamaño del efecto 0,60; un valor medio sería 0,40). Según el propio Hattie (2015), esto se debe a que existen maneras diversas de modificar y complementar el formato tradicional de la clase magistral (uso de clickers, calidad de los tutoriales, feedback formativo, etc.) en donde la preparación previa del alumnado (pone como ejemplo el mismo flipped classroom) y el análisis posterior son elementos cruciales.

Un ejemplo exitoso de este tipo de planteamientos lo encontramos también en el MIT, con las famosas clases magistrales del profesor Walter Lewin:

De hecho, en un modelo tipo peer instruction (creado por Eric Mazur en Harvard y que podemos considerar, en cierta forma, un enfoque predecesor del flipped classroom), el profesor también explica, por supuesto. Aunque cede gran parte del protagonismo al alumnado fomentando la interacción en clase.

¿Y qué piensan los alumnos al respecto? En un estudio en el que intervinieron 275000 estudiantes de secundaria en Estados Unidos durante los años 2006 y 2009 se constató que la causa del aburrimiento se debía a que no encontraban el estudio interesante (81%), no era relevante paras ellos (42%) o se debía a que no existía la adecuada interacción con el profesor (35%). Pero cuando se les preguntó sobre qué métodos de enseñanza les permitían comprometerse más con el aprendizaje, se decantaron por los debates y discusiones (61%), los proyectos de grupo (60%) y los proyectos con recursos tecnológicos (55%). Las presentaciones de los propios alumnos y las actividades artísticas también fueron muy respaldadas, cosa que no ocurrió con las clases magistrales (ver figura 2; Yazzie-Mintz, 2010). Todas estas estrategias se pueden integrar fácilmente en un aprendizaje basado en proyectos (ABP), una metodología de enseñanza que  utilizada de forma adecuada puede ser importante en el proceso de mejora educativa.

figura-2

Proyecto como plato principal

El ABP es una metodología de aprendizaje activo en la que se induce el aprendizaje del alumno pidiéndole que supere retos o que responda a preguntas concretas. Así hace cosas con los conocimientos, antes de que se los expliquemos, de forma activa, constructiva y creativa y se fomenta su autonomía y reflexión crítica ante el problema planteado. Suministrando retos adecuados, trabajando de forma cooperativa y actuando el profesor como orientador en el proceso de aprendizaje, se espera que el alumno pueda ir superando las dificultades que le vayan surgiendo durante la investigación y que vaya aprendiendo los contenidos curriculares y las competencias clave identificadas. Aunque se hable de aprendizaje basado en proyectos, problemas, retos,… consideramos que son variantes de un mismo tema que comparten más similitudes que no diferencias. Por lo tanto, tal como hacen otros autores, podemos utilizar un enfoque globalizador en el que se considera que pueden existir distintos tipos de proyectos bajo el mismo enfoque (Larmer et al., 2015):

  • Resolución de un problema real: Mejora del gasto energético escolar.
  • Diseño de un producto: Construcción de casas para pájaros en la escuela.
  • Análisis de una cuestión abstracta: ¿Son los robots amigos o enemigos?
  • Elaboración de una investigación: ¿Cómo puede afectar el cambio climático a las especies animales de nuestra región?
  • Posicionamiento ante un problema: ¿Tenemos derecho a capturar animales?

Pero siempre considerando el ABP como el protagonista del aprendizaje, lo cual no ocurre cuando se realizan proyectos al terminar las unidades didácticas para asentar lo trabajado mediante procedimientos más tradicionales. Cuando el proyecto se considera el plato principal -y no el postre- se caracteriza por lo siguiente (Larmer y Mergendoller, 2011):

  • Pretende enseñar contenido significativo.
  • Requiere pensamiento crítico, cooperación y comunicación.
  • Es imprescindible la investigación y la necesidad de crear algo nuevo.
  • Se organiza en torno a una pregunta guía abierta.
  • Conlleva el aprendizaje de contenidos y competencias esenciales.
  • Permite la participación del alumnado.
  • Incluye procesos de evaluación, feedback y reflexión.
  • Conlleva una presentación del producto final ante una audiencia.

El ABP permite a los alumnos aprender contenidos curriculares y trabajar competencias imprescindibles en los tiempos actuales, lo cual se facilita cuando se vincula el aprendizaje a situaciones reales.

En la figura 3 se muestran una serie de fases en la secuencia de enseñanza y aprendizaje en el ABP que consideramos imprescindibles (Hernando, 2015).

figura-3

Ejemplos de proyectos

Dibujando el boom inmobiliario

Se elabora un cómic que sintetiza y analiza críticamente los motivos que desencadenaron la burbuja inmobiliaria y las consecuencias socioeconómicas que conllevó en los años siguientes. Educación artística, ciencias sociales, matemáticas o lengua confluyen en un proyecto en el que lo importante es profundizar en los factores que originaron la crisis económica y en el que el cómic es una herramienta de comunicación, pero no el protagonista del aprendizaje.

boom-inmobiliario

¿Por qué esta tableta de chocolate tiene forma de prisma triangular?

Pregunta que guía el aprendizaje en una unidad didáctica de optimización de funciones en el contexto de las matemáticas. Los alumnos analizan otras superficies y volúmenes, realizan un estudio de ingresos-costes de otro tipo de tabletas de chocolate,… En este tipo de procesos de indagación es muy importante guiar al alumnado en la búsqueda de información y el análisis experimental para facilitar el aprendizaje eficiente.

toblerone

Ocio nocturno saludable

Adolescentes organizan alternativas de ocio nocturno dirigidas a jóvenes del barrio sensibilizándolos sobre el consumo de alcohol o de drogas. Es un proyecto aprendizaje-servicio (APS) en el que se aprenden contenidos curriculares vinculados a las ciencias de la salud y a la educación para la ciudadanía, a la vez que se trabajan habilidades ligadas a la organización, la comunicación o la cooperación. Hay que concienciar al alumnado que el proyecto no se restringe al servicio prestado.

ocio-nocturno

Y el ABP puede ser una estupenda forma de acercar la escuela a alumnos con necesidades educativas específicas y/o desfavorecidos socialmente. En el siguiente video, alumnos de nuestro colaborador José Luis Redondo publicitan la empresa ‘Suck and Sleep’ que fabrica productos infantiles, entre ellos un chupete que mediante ultrasonidos acaba con el cólico del lactante. Una muestra clara de desarrollo del pensamiento creativo:

Ejemplos de escuelas

Hay muchas escuelas que han incorporado e integrado el aprendizaje basado en proyectos en sus planteamientos educativos con bastante éxito (ver links de algunas escuelas representativas). Analizando los distintos modelos vemos que comparten muchas características. Asumen con naturalidad que el ABP es una buena metodología, una idea que comparten tanto profesores como alumnos. El éxito de la implementación requiere una buena planificación de los proyectos, lo cual se facilita teniendo muchos recursos que permitan replicar o adaptar otros proyectos ya realizados. Y junto a ello, estas escuelas forman al profesorado en el uso de estas metodologías y fomentan su cooperación que se extiende a toda la comunidad educativa. Sin olvidar que los cambios metodológicos en la enseñanza tienen que ir acompañados del rediseño conveniente de la evaluación, en la cual conviven una gran variedad de estrategias formativas (rúbricas, portfolios, etc.) que tienen una incidencia mayor en el aprendizaje real.

Un ejemplo interesante de transformación educativa lo constituyen las Envision Schools (ver Lenz et al., 2015 y video anterior), unas escuelas públicas en la etapa preuniversitaria con muchos alumnos que pertenecen a entornos socioeconómicos desfavorecidos que no se han adaptado a los sistemas escolares más tradicionales. Estas escuelas realizan un gran trabajo de planificación y adaptación de los estándares curriculares, siendo flexibles en su aplicación. En el proceso de aprendizaje priorizan la adquisición de competencias básicas en los tiempos actuales como son la creatividad, la cooperación, la comunicación o el análisis crítico. Han generado una cultura de centro asumiendo una verdadera mentalidad de crecimiento entre todos sus integrantes. En lo referente a la evaluación, utilizan unos niveles de desempeño (de 1 a 4, de menor a mayor experiencia) cuya fase inicial han de superar los alumnos y dan mucha importancia a lo que llaman la defensa del portfolio, una fase final del proyecto que sirve para reforzar el trabajo de las competencias básicas identificadas y en el que puede participar toda la comunidad educativa. Las Envision Schools dan mayor importancia a la calidad que a la cantidad de los proyectos desarrollados. En su caso concreto pueden realizar, en promedio, 3 o 4 proyectos anuales según las necesidades particulares. Pero en todos ellos, se asume un enfoque multidisciplinar en el que intervienen varios profesores (una media de 3). Y como se puede ver en su horario (ver figura 4), el arte y la tecnología adquieren gran protagonismo en el aprendizaje. Sin olvidar las reuniones semanales de toda la comunidad y esa especie de tutorías (Advisory Period) que constituyen grandes oportunidades de aprendizaje socioemocional.

figura-4

¿Y qué dicen las investigaciones sobre el ABP?

Si bien es cierto que no existe mucha investigación cuantitativa específica sobre el ABP, sí que encontramos algunos estudios que son reveladores. Desde una perspectiva más globalizadora, en un metaanálisis reciente de 225 estudios en el contexto de asignaturas universitarias de ciencias, el uso de metodologías activas mejoró los resultados académicos del alumnado y su asistencia a clase frente al uso de la clase magistral en esas materias (Freeman et al., 2014). Algo que también se comprobó en un estudio publicado en la prestigiosa revista Science. Un profesor inexperto que utilizaba un enfoque Flipped classroom con el que los alumnos preparaban la lección en casa, y en el aula analizaban y resolvían problemas trabajando de forma cooperativa, incrementó un 20% la asistencia de los alumnos y sus resultados en las pruebas de evaluación mejoraron un 23% respecto a los del grupo de control, formado por alumnos que asistían a la tradicional clase magistral impartida por un profesor experto (Deslauriers et al., 2011; ver figura 5).

figura-5

Cuando se analiza el aprendizaje basado en problemas en etapas superiores (secundaria y universidad), su incidencia es muy baja (Hattie, 2015; ver figura 6). Según Hattie, esta metodología no será adecuada si los alumnos no tienen los suficientes conocimientos de base. En consonancia con esto, Prince (2004) ha identificado la dificultad de implementar esta metodología si el profesor no tiene la suficiente experiencia, y sugiere la necesidad de buscar problemas ya diseñados. Según este autor, la incidencia de estas prácticas sobre el rendimiento académico general es muy baja aunque sí que inciden en el desarrollo de hábitos académicos y el desarrollo de competencias.

figura-6

Por otra parte, existe algún metaanálisis que analiza la incidencia del APS (aprendizaje-servicio) sobre diversos factores. Según Celio et al. (2011), los efectos más positivos se dan sobre el rendimiento académico (tamaño del efecto 0,43) y, en menor medida, sobre otras cuestiones evaluadas, como la actitud ante la escuela, el compromiso cívico o la competencia social. Seguramente, el hecho de que estos proyectos vinculen directamente los contenidos curriculares a situaciones cotidianas ayude a los estudiantes a encontrar la relación entre lo que hacen y lo que aprenden y ello puede repercutir en la mejora del rendimiento académico, a diferencia de lo que ocurre con otro tipo de proyectos.

En el contexto propio de secundaria, se realizó un estudio longitudinal en varias escuelas de Detroit y se comprobó que los alumnos que habían participado en proyectos que incorporaban recursos tecnológicos para trabajar los contenidos curriculares de ciencias obtuvieron mejores resultados en las pruebas MEAP (pruebas estandarizadas del estado de Michigan) que no aquellos que siguieron recibiendo la enseñanza mediante los métodos utilizados tradicionalmente en esas escuelas (Geier et al., 2008; ver figura 7).

figura-7

Conclusiones

Como podemos deducir de todo lo anterior -asumiendo que no existe mucho estudio cuantitativo específico-, el ABP es una estrategia interesante para atender la diversidad en el aula. De hecho, un principio básico de la neurociencia es que cada cerebro es único y singular. Pero no en todos los tipos de proyectos se obtienen los mismos resultados. Aquellos más vinculados a situaciones reales, como los proyectos APS, parece que son los que tienen mayor incidencia sobre el rendimiento académico del alumnado. En algunos casos, como en el aprendizaje basado en problemas, la incidencia es muy baja. Y si el profesor no tiene la experiencia necesaria, puede ser hasta negativa, lo cual sugiere la necesidad de una buena planificación de este tipo de proyectos y la imprescindible formación y cooperación del profesorado. También se ha visto la importancia de clarificar los objetivos de aprendizaje y los criterios de éxito para alcanzarlos, conocer los conocimientos previos del alumnado y suministrar retos adecuados.

Desde la perspectiva neuroeducativa, el ABP es una forma válida de trabajar competencias esenciales en los tiempos actuales. Pero las evidencias empíricas que provienen de las ciencias cognitivas sobre cómo aprende nuestro cerebro sugieren un enfoque integrador en el que tienen cabida otras estrategias y metodologías que no excluyen, en determinadas situaciones, enfoques más tradicionales. Es decir, necesitamos ser flexibles y no olvidar el ingrediente emocional que lo guía todo. Porque disponemos de un sistema de recompensa cerebral que es el que en definitiva nos permite aprender. En la naturaleza, tanto a nivel microscópico como macroscópico, triunfa el equilibrio. Y, seguramente, ese también sea el mejor enfoque educativo. Aunque, como en la vida, no existen soluciones únicas a los problemas planteados. John Dewey lo reflejaba muy bien: “La educación no es preparación para la vida; la educación es la vida misma”.

Jesús C. Guillén

 

Referencias:

  1. Celio C. I., Durlak J., y Dymnicki A. (2011): “A Meta-Analysis of the Impact of Service-Learning on Students”. Journal of Experiential Education 34 (2), 164-181.
  2. Diamond A. y Ling D. S. (2016): “Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not”. Developmental Cognitive Neuroscience 18, 34-48.
  3. Deslauriers L., Schelew E., Wieman C. (2011): “Improved learning in a large-enrollment physics class”. Science 332, 862-864.
  4. Freeman S. et al. (2014): “Active learning increases student performance in science, engineering, and mathematics”. Proceedings of the National Academy of Sciences 111 (23), 8410-8415.
  5. Geier R. et al. (2008): “Standardized test outcomes for students engaged in inquiry-based science curricula in the context of urban reform”. Journal of Research in Science Teaching 45(8), 922-939.
  6. Hattie J. (2015): “The applicability of visible learning to higher education”. Scholarship of Teaching and Learning in Psychology 1(1), 79–91.
  7. Hernando A. (2015). Viaje a la escuela del siglo XXI. Fundación Telefónica.
  8. Larmer J., Mergendoller J. (2011): “The main course, not dessert”. Buck Institute for Education.
  9. Larmer J., Mergendoller J., Boss S. (2015). Setting the standard for project based learning: a proven approach to rigorous classroom instruction. Alexandria: ASCD.
  10. Lenz B., Wells J. y Kingston S. (2015). Transforming schools: using project-based learning, performance assessment, and common core standards. San Francisco: John Wiley & Sons Inc.
  11. Mazziotta J. C. et al. (2009): “The Myth of the normal, average human brain—The ICBM experience: (1) subject screening and eligibility”. Neuroimage 44(3), 914-922.
  12. Poh M. Z., Swenson, N. C., Picard, R. W. (2010): “A wearable sensor for unobtrusive, long-term assessment of electrodermal activity”. IEEE Transactions on Biomedical Engineering 57 (5), 1243-1252.
  13. Prince M. (2004): “Does active learning work? A review of the research”. Journal of Engineering Education 93(3), 223-231.
  14. Yazzie-Mintz, E. (2010). Charting the path from engagement to achievement: A report on the 2009 High School Survey of Student Engagement. Bloomington, IN: Center for Evaluation and Education Policy.

 

Anuncios

Enseñar menos y aprender más: actividad cerebral del alumno durante la tradicional clase magistral

Conversión en Harvard

Cuenta Eric Mazur, prestigioso profesor en la Universidad de Harvard, que en sus primeros años de docencia utilizaba la clase magistral tradicional, tal como habían hecho sus antiguos profesores, para enseñar física con buenos resultados aparentes: sus alumnos estaban satisfechos y, además, obtenían muy buenos resultados académicos en las pruebas estandarizadas semestrales (Mazur, 2009). Pero esos resultados que saciarían los deseos primarios de cualquier profesor -los alumnos están contentos y encima sacan buenas notas- no eran suficientes para un científico acostumbrado a analizar con espíritu crítico todo lo que hacía. Cuando con el paso del tiempo investigó sobre el proceso de aprendizaje de sus alumnos variando el planteamiento de los problemas y acercándolos a situaciones más reales, comprobó que existía una predominancia abusiva del conocimiento superficial y que mostraban grandes dificultades para abstraer los contenidos teóricos a contextos cotidianos. Así, por ejemplo, los alumnos conocían con exactitud el enunciado de la tercera ley de Newton y podían resolver fácilmente problemas numéricos en los que la aplicaban, pero eran incapaces de analizar con precisión las fuerzas que intervienen en un choque entre un coche ligero y un camión pesado, interpretando muchos de ellos que el camión ejerce una fuerza mayor (su peso es irrelevante respecto a la fuerza ejercida). O podían resolver problemas teóricos de circuitos eléctricos deduciendo las intensidades de corriente que circulan por cada una de las resistencias dibujadas, pero cuando se les planteaba un circuito real similar con bombillas, un generador y un interruptor tenían grandes dificultades para interpretar qué corriente circulaba por cada parte del circuito e identificar la analogía con el circuito anterior (ver figura 1). Mazur se dio cuenta que la utilización del tradicional método expositivo era insuficiente porque le convertía en un mero transmisor de información que comprometía el aprendizaje real de sus alumnos.

Figura 1

¿Qué dice la neurociencia al respecto?

Años más tarde, en una investigación dirigida por Rosalind Picard, se probó un dispositivo novedoso para medir la actividad electrodérmica, un registro de la actividad del sistema nervioso simpático, durante la realización de tareas físicas, cognitivas o emocionales (Poh, Swenson y Picard, 2010). Uno de los experimentos consistía en que un estudiante del MIT de 19 años llevara las 24 horas del día, durante una semana completa, ese sensor integrado en una especie de muñequera muy fácil de colocar. De esta forma, los investigadores obtendrían información relevante sobre los patrones diarios de actividad fisiológica de este universitario. Y los resultados no defraudaron. Cuando se analizaron los datos estadísticos correspondientes a las tareas cotidianas se observaron picos de actividad en la realización de los deberes, en el trabajo de laboratorio, durante los exámenes o en periodos de estudio, seguramente debido a la mayor exigencia cognitiva y estrés generado por estas tareas. Sin embargo, la amplitud y la frecuencia de las ondas registradas decaían mucho cuando el alumno estaba escuchando las clases magistrales de su profesor. En este caso, el nivel de actividad fisiológica era muy similar al que se producía cuando se encontraba viendo la televisión e incluso al que se da en alguna de las fases características de relajación durante el sueño (ver figura 2), lo cual representaría una justificación neural de la ineficacia del tradicional método expositivo en el aula.

Figura 2

Estas evidencias empíricas no implican que no sea útil, en determinados momentos de la clase, que el profesor participe activamente explicando o analizando determinados conceptos o contenidos si no que sugieren que la adopción del tradicional método expositivo como método predominante de enseñanza hace que el alumno sea un mero receptor pasivo de la información perjudicando su motivación y aprendizaje.

Alternativas: hablar menos y escuchar más

Está claro que a los profesores nos encanta hablar. De hecho, según John Hattie (2012), en promedio, entre el 70 % y el 80 % del tiempo en el aula el profesor está hablando. Sin embargo, los estudios revelan que cuando cede el protagonismo al alumno y éste participa de forma activa en el aprendizaje su rendimiento aumenta (Dolan y Collins, 2015) por lo que, en la práctica, deberíamos invertir los roles y hablar menos pero escuchar más. Este proceso facilita el diálogo democrático necesario para compartir el aprendizaje e informa al profesor sobre los conocimientos previos, intereses o capacidades del alumno que permitirán optimizar lo verdaderamente esencial, que es el aprendizaje y no la enseñanza.

En el caso concreto de Eric Mazur, ideó un método de enseñanza interactivo (peer instruction) en el que se da una inversión del planteamiento tradicional (exposición en el aula y deberes en casa): los alumnos consultan materiales antes de la clase familiarizándose con los mismos y el tiempo en el aula se invierte para que los compañeros analicen y discutan sobre cuestiones que va planteando el profesor. Mazur comienza la clase con una breve explicación sobre el concepto que se va analizar, lo cual incide sobre la importancia de clarificar los objetivos de aprendizaje. Después plantea una pregunta con múltiples respuestas que los alumnos han de responder en uno o dos minutos con un clicker (herramienta de votación sin cable que permite interactuar a los alumnos con el material presentado; ver figura 3) que envía las respuestas a la pantalla de su ordenador. En el caso de que el porcentaje de aciertos sea menor del 70 %, se anima a los alumnos a que discutan durante unos minutos con otros compañeros que respondieron de forma diferente.

Figura 3

Durante ese proceso, el profesor, en compañía de algunos colaboradores, participa en los análisis de los grupos promoviendo reflexiones más productivas guiando así su pensamiento. A continuación, se les vuelve a pedir a los alumnos que respondan a la cuestión planteada y, en el caso que sea necesario, el profesor analiza la respuesta más adecuada. Dependiendo de las respuestas de los alumnos se puede plantear una pregunta relacionada con la anterior o se cambia de tema.

Más allá de un uso innovador de la tecnología (en lugar de los clickers se pueden usar tarjetas de aprendizaje, por ejemplo), el método ha demostrado ser eficaz, básicamente, por la interacción entre compañeros que permite mejorar sistemáticamente el porcentaje de respuestas correctas tras el análisis colectivo y que incluso mejora la reflexión y el aprendizaje de los alumnos, aunque ninguno de ellos conociera la respuesta a la pregunta planteada antes de la discusión (ver figura 4).

Figura 4

La peer instruction constituye un método más que, por supuesto, hemos de conocer porque es fácilmente aplicable a otras materias y permite mejorar el aprendizaje real de los alumnos. Pero no hemos de olvidar que la innovación educativa no se restringe a la pedagogía si no que ha de incidir también en el currículo, modificándolo, reduciéndolo y adaptándolo a las necesidades particulares de los alumnos de cada zona. “Enseñar menos, aprender más”, lema del novedoso movimiento educativo surgido hace unos pocos años en Singapur, significa en el fondo mejorar los sistemas de enseñanza adecuándolos a las necesidades de los tiempos actuales incidiendo en la necesidad de un aprendizaje que permita a los alumnos capacitarlos para la vida. Una simple cuestión de eficiencia educativa, algo de lo que sabe mucho nuestro cerebro.

Jesús C. Guillén

.

Referencias:

  1. Dolan, E. L. & Collins J. P. (2015): “We must teach more effectively: here are four ways to get started”. Molecular Biology of the Cell 26(12), 2151-2155.
  2. Hattie, J. (2012). Visible learning for teachers. Maximizing impact on learning. Routledge.
  3. Mazur, E. (1997). Peer instruction: a user’s manual. Pearson Education.
  4. Mazur, E. (2009): “Farewell, Lecture?”. Science 323, 50-51.
  5. Poh M. Z., Swenson, N. C., Picard, R. W. (2010): “A wearable sensor for unobtrusive, long-term assessment of electrodermal activity”. IEEE Transactions on Biomedical Engineering 57 (5), 1243-1252.
  6. Smith M. K. et al. (2009): “Why peer discussion improves student performance on in-class concept questions”. Science 323, 122-124.