Buscar resultados

Keyword: ‘ejercicio físico’

¿Puede el ejercicio físico mejorar el rendimiento académico?

Las modernas investigaciones en neurociencia están revelando que la actividad física es tan buena para el corazón como para el cerebro. No solo mejora el sistema cardiovascular o el sistema inmunológico, lo que repercute directamente en la motivación o el estado de ánimo, sino que, además, hoy ya conocemos cómo el ejercicio regular es capaz de modificar el entorno químico y neuronal que favorece el aprendizaje. Y estos beneficios que se pueden dar a cualquier edad, tienen unas enormes repercusiones educativas.

ESTUDIOS CON ADULTOS

Sabemos que el cerebro humano, debido a su plasticidad, tiene una enorme capacidad para modificar su estructura y funcionamiento a través de la interacción con el entorno. Y en este proceso continuo de adaptación y supervivencia de la especie durante miles de años que ha permitido que el cerebro se desarrollara, es innegable que la actividad física ha desempeñado un papel crucial. Y si la integración de las capacidades cognitivas en las operaciones motrices era necesaria para la supervivencia del ser humano, no es casualidad que el hipocampo, imprescindible para la memoria explícita y el aprendizaje, sea una de las regiones cerebrales más influenciadas por el ejercicio físico (Gómez-Pinilla y Hillman, 2013).

Mejora de la infraestructura neuronal: el BDNF

En un estudio en el que participaron 120 personas mayores (Erickson et al., 2011) se demostró que un entrenamiento aeróbico de intensidad moderada de tres días por semana durante un año aumentó un 2% el volumen de su hipocampo, lo cual iba acompañado de una mejora de la memoria espacial y de un incremento de los niveles de una proteína, el BDNF (del inglés, factor neurotrófico derivado del cerebro). El BDNF segregado como consecuencia del ejercicio físico es muy importante porque:

  • Mejora la plasticidad sináptica, es decir, fortalece las conexiones neuronales que garantizan el aprendizaje. Cuando se bloquea esta molécula en ratones, se eliminan los beneficios cognitivos de la actividad física (Vaynman et al., 2004).
  • Aumenta la neurogénesis en una región imprescindible para la formación de las memorias: el hipocampo (ver figura 1). Este proceso de formación de nuevas neuronas, que ya se había comprobado en otros mamíferos, facilita los procesos cognitivos (Pereira et al., 2007).
  • Aumenta la vascularidad cerebral. El aumento de sangre en las neuronas permite la llegada de toda una serie de nutrientes que mejoran su funcionamiento. Este proceso en el que intervienen también otros factores de crecimiento como el IGF-1 o el VEGF está directamente relacionado con la neurogénesis (Van Praag, 2009).
    Figura 1

Aunque en la mayoría de estudios se han comprobado los beneficios del ejercicio físico aeróbico, en condiciones anaeróbicas también se han encontrado efectos positivos. Así, por ejemplo,  en un estudio en el que participaron estudiantes deportistas con edades por encima de los 20 años, se comprobó que aquellos a los que se les sometía a una prueba de vocabulario tras 3 minutos de sprints, aprendían palabras un 20% más rápido que aquellos que o bien descansaban o bien realizaban una larga prueba aeróbica de baja intensidad. Y sus análisis de sangre revelaron mayores niveles de BDNF (Winter et al., 2007).

La demostración de que con solo unos minutos de ejercicio se puede mejorar el aprendizaje posterior sugiere la necesidad de utilizar descansos regulares durante la jornada escolar para mejorar el rendimiento académico. Al realizarse el ejercicio físico se generan neurotransmisores como la serotonina, la noradrenalina y la dopamina que sabemos que benefician el estado de alerta, la atención o la motivación (Ratey y Hagerman, 2008), factores críticos en el proceso de aprendizaje. Y esa es la receta perfecta para combatir el tan temido estrés.

Pensando en el futuro: la reserva cognitiva

A parte de todo lo anteriormente comentado, también se ha demostrado que los beneficios de la actividad física son acumulativos, es decir, inciden sobre lo que se conoce como reserva cognitiva que, por ejemplo, nos permitirá alargar el efecto protector ante ciertas enfermedades neuroedegenerativas como el Alzheimer. En un estudio en el que participaron más de un millón de suecos entre los años 1950 y 1976 (Aberg et al., 2009), se recogieron datos sobre el estado físico y la inteligencia de los participantes a los 15, a los 18 y entre los 28 y 54 años de edad. En concreto, los datos recogidos a los 18 años se compararon con los logros académicos, la situación socioeconómica o la ocupación laboral de los participantes años después.

Los análisis de los resultados a los 18 años de edad revelaron una correlación entre la resistencia cardiovascular (y no la fuerza muscular) con la capacidad intelectual, tanto en pruebas verbales, de lógica o de inteligencia general (ver figura 2).

Figura 2

Y no menos importante es que el estado físico de los participantes a los 18 años, en concreto su resistencia aeróbica o cardiovascular, guardaba una relación directa y positiva con el nivel socioeconómico y los logros académicos en la edad adulta (mejores empleos y mayor probabilidad de obtener títulos universitarios). Independientemente de que siguieran realizando ejercicio o no, aquellos que en su juventud sí que se ejercitaron mostraron años después mejores capacidades cognitivas.

ESTUDIOS CON NIÑOS Y ADOLESCENTES

Analicemos a continuación algunos de las muchas investigaciones que ya existen con jóvenes en edad escolar relacionadas con los efectos del ejercicio físico sobre competencias académicas particulares o generales y, en especial, sobre las funciones ejecutivas del cerebro, esas capacidades relacionadas con la gestión de las emociones, la atención y la memoria que nos permiten el control cognitivo y conductual necesario para planificar y tomar decisiones adecuadas.

Lengua y matemáticas

En un estudio en el que participaron 20 estudiantes de nueve años edad (Hillman et al., 2009) se les realizó una serie de tests relacionados con la lectura, la ortografía y las matemáticas en dos condiciones experimentales diferentes: después de 20 minutos caminando en una cinta de correr a un ritmo moderadamente alto o tras un periodo de descanso también de 20 minutos. Los resultados no ofrecieron dudas, los niños tras la actividad física obtuvieron mejores resultados en cada una de las pruebas (ver figura 3).

Figura 3

Competencias generales

En un metaanálisis en el que se  analizaron 44 estudios (Sibley y Etnier, 2003) en los que intervinieron niños en edad escolar entre los 4 y los 18 años, se encontró una correlación positiva entre la actividad física y el aprendizaje. Se analizaron ocho categorías cognitivas: habilidades perceptivas, cociente de inteligencia, resultados académicos, tests verbales, tests matemáticos, memoria y una última en la que se incluían áreas diversas relacionadas con la creatividad o la concentración. Los resultados revelaron que el ejercicio físico fue beneficioso para todas las categorías salvo para la memoria y aunque este efecto positivo se encontró en todas los grupos asignados por edades, fue mayor en los niños de los grupos entre 4-7 y 11-13 años que en los de 8-10 y 14-18 años.

En una revisión posterior de 50 estudios (Rasberry et al., 2011) en la que se analizó la incidencia de la actividad física (en donde se incluían también las clases de educación física) en el rendimiento académico de los alumnos en edad escolar, se comprobó que el 50,5% de las asociaciones encontradas fueron positivas, el 48% no produjeron efectos significantes y solo el 1,5% fueron negativas. Los autores dudan de las medidas tomadas en una enorme cantidad de escuelas americanas en las que se han eliminado o reducido drásticamente las clases de educación física o los mismos recreos para poder dedicar más tiempo a otras materias, supuestamente más importantes, para mejorar los resultados de los alumnos en las pruebas de evaluación externas.

Atención

En una investigación en la que se aplicó un programa de ejercicio físico predominantemente aeróbico de 30 minutos a alumnos de 13 y 14 años de edad (Kubesch et al., 2009), se comprobó que mejoraron su rendimiento en tareas de discriminación visual que requerían una gran atención ejecutiva, en comparación a aquellos que realizaron un descanso activo de 5 minutos. Algo parecido se encontró en un programa de actividad física extraescolar que se aplicó durante 9 meses a alumnos con edades entre 7 y 9 años (Hilman et al., 2014). El análisis de los encefalogramas reveló una mayor actividad cerebral en los niños que participaron en el programa al resolver tareas en las que intervenían los recursos atencionales (ver figura 4), a diferencia de los del grupo de control.

Figura 4

Especialmente importante, sobre todo para alumnos con TDAH, es combinar el ejercicio físico con una mayor actividad mental como se da, por ejemplo, en el caso de las artes marciales. En un estudio en el que se probó un programa de taekwondo durante 3 meses en niños con edades comprendidas entre los 5 y los 11 años, se obtuvieron mejoras tanto conductuales como académicas en los participantes (Lakes y Hoyt, 2004).

Memoria explícita

La misma relación directa entre el ejercicio físico, el volumen del hipocampo y la memoria que se había identificado en animales y en personas adultas, se quiso demostrar en la infancia. En un experimento en el que participaron niños de 9 y 10 años de edad, se comprobó que aquellos que mostraban una mejor capacidad cardiovascular tenían un volumen de su hipocampo mayor (ver figura 5) y, como consecuencia de ello, se desenvolvían mejor en tareas que requerían de la memoria explícita (Chaddock et al., 2010), el tipo de memoria que se utiliza tanto en las tareas académicas.

Figura 5

Memoria de trabajo

La memoria de trabajo es una memoria de corto plazo que requiere cierto grado de reflexión, por lo que su desarrollo es muy importante desde la perspectiva educativa. En un estudio en el que participaron 43 niños con edades comprendidas entre los 7 y los 9 años, se quiso analizar los efectos de un programa extraescolar de actividad física que duró 9 meses en este tipo de memoria (Kamijo et al., 2011). Aunque el programa se centraba en la actividad cardiovascular, también se diseñaron actividades específicas para mejorar la fuerza en las que se utilizaban bandas elásticas o balones medicinales. Los análisis demostraron que los niños que participaron en el programa mejoraron la realización de tareas en las que tenían que reconocer estímulos que se les habían presentado anteriormente, un indicador claro de la mejora de la memoria de trabajo que es tan importante en la resolución de problemas.

Autocontrol

En una investigación que utilizó la técnica de la resonancia magnética funcional, se estudiaron los efectos producidos sobre el cerebro en niños de 8 y 9 años de un programa de actividad física que duró 9 meses y en el que los participantes se ejercitaban 60 minutos en cada una de las cinco sesiones semanales (Chaddock et al., 2013). Las neuroimágenes revelaron que aquellos niños que participaron en el programa mostraron patrones específicos de activación de la corteza prefrontal y de la corteza cingulada anterior (ver figura 6) que iban acompañados de una mejora en tareas específicas que requerían un gran autocontrol, junto a otras funciones ejecutivas asociadas. Y esto es especialmente importante, dada la influencia enorme del autocontrol en los procesos emocionales y cognitivos que afectan directamente al rendimiento académico del alumno.

Figura 6

EL EJERCICIO FÍSICO, UNA PARTE ESENCIAL DEL CURRÍCULO ESCOLAR

Los estudios con niños y adolescentes sobre la práctica de la actividad física han demostrado los mismos beneficios que se habían encontrado tanto en animales como en adultos. Como consecuencia del ejercicio físico se segregan toda una serie de neurotransmisores y factores de crecimiento cerebrales que estimulan el desarrollo de nuevas neuronas en el hipocampo y el fortalecimiento de las conexiones neuronales que facilitan la memoria y el aprendizaje. Especialmente importantes son los estudios con niños en los que se demuestra la mejora de las funciones ejecutivas básicas como la capacidad de inhibición, la memoria de trabajo o la flexibilidad cognitiva que son imprescindibles para el buen desarrollo académico y personal de los alumnos.

Las investigaciones analizadas sugieren que no es una buena idea erradicar del currículo o dedicar el mínimo tiempo posible a las clases de educación física cuando sabemos que mejoran nuestra salud física, emocional y mental, procesos que acaban siendo indisolubles. Y, por supuesto, tampoco beneficia colocar estas clases al final del horario escolar cuando sabemos que unos pocos minutos de actividad física son suficientes para mejorar la atención y la concentración del alumno, factores críticos en su aprendizaje. En este sentido, se deberían utilizar descansos regulares que permitieran a los alumnos moverse y fomentar zonas de recreo al aire libre que permitieran la actividad física voluntaria. Un simple paseo por un entorno natural puede recargar de energía determinados circuitos cerebrales que intervienen en la atención o la memoria y que pueden saturarse como consecuencia de una actividad académica continuada. De ello se puede beneficiar cualquier alumno, pero en especial aquellos con TDAH. Y ese simple paseo o cualquier actividad física que nos permita cierta desconexión mental respecto a lo que estamos haciendo nos puede permitir encontrar, gracias a los mecanismos cerebrales inconscientes que no dejan de trabajar, una solución creativa a ese problema que nos frustraba y que no podíamos resolver cuando pensábamos en él de forma cerrada.

El movimiento está asociado a nuestro propio proceso de desarrollo cerebral por lo que no deberíamos desaprovechar los beneficios derivados del ejercicio físico, sin olvidar que cuando suministramos los retos intelectuales adecuados el efecto se amplifica. En definitiva, lo que es bueno para el corazón es bueno para el cerebro. Mejores alumnos y mejores personas.

Jesús C. Guillén

.

Referencias bibliográficas:

  1. Aberg M. et al. (2009): “Cardiovascular fitness is associated with cognition in Young adulthood”. PNAS 106 (49), 20906-20911.
  2. Chaddock L. et al. (2010): “A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children”. Brain Research 1358, 172-183.
  3. Chaddock L. et al. (2013): “The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention. Frontiers in Human Neuroscience 7.
  4. Erickson K. et al. (2011): “Exercise training increases size of hippocampus and improves memory”. PNAS 108, 3017-3022.
  5. Gómez-Pinilla F. y Hillman C. (2013): The influence of exercise on cognitive abilities”. Comprehensive Physiology 3, 403-428.
  6. Hillman C.et al. (2009): “The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children”. Neuroscience 159, 1044-1054.
  7. Hillman et al. (2014): “Effects of the FITKids randomized controlled trial on executive control and brain function”. Pediatrics 134 (4), 1063-1071.
  8. Kamijo K. et al. (2011): “The effects of an afterschool physical activity program on working memory in preadolescent children. Developmental Science 14, 1046-1058.
  9. Kubesch S. et al. (2009): “A 30-minute physical education program improves students’ executive attention”. Mind, Brain, and Education 3, 235-242.
  10. Lakes K. D., Hoyt W. T. (2004): “Promoting self-regulation through school-based martial arts training”. Applied Developmental Psychology 25, 283–302.
  11. Pereira A. et al. (2007): “An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus”. PNAS 104, 5638-5643.
  12. Rasberry C. et al. (2011): “The association between school-based physical activity, including physical education, and academic performance: a systematic review of the literature. Preventive Medicine 52, S10-S20.
  13. Ratey, John J. y Hagerman, Eric (2010). Spark! How exercise will improve the performance of your brain. Quercus.
  14. Sibley B. y Etnier J. (2003): “The relationship between physical activity and cognition in children: a meta-analysis”. Pediatric Exercise Science 15, 243-256,
  15. Van Praag H. (2009): “Exercise and the brain: something to chew on”. Trends in Neurosciences 32(5), 283-290.
  16. Vaynman S. et al. (2004): “Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition”. European Journal of Neuroscience 20, 2580-2590.
  17. Winter B. et al. (2007): “High impact running improves learning”. Neurobiology of Learning and Memory 87, 597-609.

Importancia del ejercicio físico en la educación

18 septiembre, 2012 5 comentarios

.

Las enfermedades cardiovasculares en las sociedades occidentales, en las que existe una alta incidencia del sedentarismo, representan la primera causa de muerte. Está bien documentado que una actividad física moderada aumenta la protección contra este tipo de enfermedades y aporta, además, grandes beneficios a nivel muscular, óseo o pulmonar. A nivel cerebral, diversos estudios con animales (especialmente ratones) y adultos, principalmente de la tercera edad, han demostrado la influencia positiva de la actividad física regular sobre la memoria y el aprendizaje. En el caso de personas con edades avanzadas, promueve la reducción del riesgo de demencia y en la enfermedad de Alzheimer retrasa el deterioro de los procesos cognitivos.

Otros estudios  han demostrado que el ejercicio físico  produce una activación de la neurogénesis en el giro dentado del hipocampo, una región cerebral fundamental en los procesos de consolidación de la memoria y el aprendizaje y, además, se ha comprobado un incremento de su volumen.

En el siguiente artículo, nos centramos en estudios recientes que resultan novedosos  porque analizan los efectos positivos del ejercicio físico (principalmente aeróbico) sobre los procesos cognitivos en la infancia y en la adolescencia, lo que conlleva importantes implicaciones educativas.

Ejercicio físico en la infancia

En un estudio con 20 estudiantes de nueve años (8 niñas y 12 niños) se evaluaron los efectos del ejercicio físico moderado sobre la atención1. El procedimiento experimental comparaba dos sesiones diferentes: Un día los participantes debían caminar durante 20 minutos  en una cinta de correr, a un ritmo moderadamente alto, seguido de unos tests cognitivos en los que tenían que mostrar autocontrol. Estas pruebas (flanker tasks)2 consistían en determinar incongruencias que aparecían en una pantalla pulsando un botón, es decir, tareas de discriminación de estímulos. Otro día, los estudiantes se sometían a los mismos tests pero, en esta ocasión,  después de un periodo de 20 minutos de descanso. En ambos casos, se registraba la actividad cerebral mediante electroencefalogramas al realizar las tareas.

Los análisis demostraron que el rendimiento de los estudiantes  en las pruebas cognitivas era mejor tras la sesión de ejercicio físico, especialmente cuando las tareas eran más complejas. Los niños invertían menores tiempos de reacción en la identificación de las figuras y mayor precisión en las respuestas que tras la sesión de reposo. Además, se midieron señales mayores en los potenciales cerebrales relacionados con las actividades realizadas, en concreto unos potenciales relacionados con los procesos atencionales.

En un intento de los investigadores por aproximar estas pruebas a situaciones de aprendizaje reales en el aula, realizaron una serie de tests relacionados con la  lectura, la ortografía y las matemáticas. Los resultados volvieron a ser mejores en la sesión que siguió al ejercicio físico, especialmente la prueba de lectura (ver figura 1).

Fig 1. Resultados obtenidos en las pruebas de comprensión lectora, ortografía y aritmética. En negro los resultados tras la sesión de ejercicio físico y en blanco después de la de reposo.

Este estudio y alguno más del mismo grupo de investigación3 demuestran la importancia de la actividad física en la infancia al mejorar la capacidad de atención y, con ello, el rendimiento académico.

Ejercicio físico en la adolescencia

Se realizó un estudio longitudinal con más de un millón de jóvenes suecos (1.221.727) nacidos entre los años 1950 y 1976.4 Una muestra tan grande posibilitó la existencia de gran cantidad de hermanos y gemelos (en concreto 1432 pares de gemelos monocigóticos) y ello permitió,  aunque el estudio era sobre la influencia de la actividad física sobre las habilidades cognitivas, analizar la influencia de factores ambientales y genéticos sobre la inteligencia.

El estudio consistía en comparar datos correspondientes a los 15 años, 18 años y entre los 28 y 54 años de edad. En concreto, se recogieron datos sobre el estado físico y la inteligencia de los participantes a los 18 años de edad durante las pruebas de reclutamiento del servicio militar. Las pruebas físicas aeróbicas o cardiovasculares se realizaron en un cicloergómetro, una especie de bicicleta estática en la que se realizan las pruebas de esfuerzo, mientras que las anaeróbicas o de fuerza muscular consistían en mediciones al realizar extensiones de cuádriceps o flexiones de bíceps. Los tests de inteligencia medían las capacidades lógicas, verbales o visuoespaciales. Todos estos datos se compararon con los logros académicos, la situación socioeconómica y la ocupación laboral años después.

Los resultados demostraron que la resistencia cardiovascular (y no la fuerza muscular) a la edad de 18 años está asociada con la capacidad intelectual.

En las representaciones anteriores observamos el crecimiento de la inteligencia global (A), la inteligencia lógica (C) o la verbal (D) en relación al aumento de la resistencia cardiovascular (eje horizontal). Las mejoras documentadas del hipocampo y del lóbulo frontal, como consecuencia de la realización de actividad física, explicaría las mejoras en el razonamiento lógico y verbal pues se considera que intervienen en estos procesos. Sin embargo, no ocurre lo mismo con la fuerza muscular (B) en donde observamos que cuando aumenta se estabiliza la inteligencia. El ejercicio aeróbico hace que el cerebro reciba más oxígeno y funcione mejor junto a unos pulmones y corazón fuertes y sanos.

El análisis de los datos obtenidos en la edad adulta no sólo sugieren que las mejoras físicas entre los 15 años y los 18 años de edad predicen la capacidad intelectual a los 18 años sino que el nivel de resistencia aeróbica o cardiovascular durante la adolescencia guarda una relación directa y positiva con el nivel socioeconómico y los logros académicos en la edad adulta (mejores empleos y mayor probabilidad de obtener títulos universitarios).

El análisis de los gemelos también mostró una relación directa entre la resistencia aeróbica y la inteligencia, es decir, una influencia clara sobre la misma de los factores ambientales, en este caso el ejercicio físico.

Implicaciones educativas

Los distintos estudios realizados han clarificado los efectos positivos que conlleva la actividad física regular. Recapitulemos alguno de estos efectos académicos:

-El hecho de que aumente el volumen del hipocampo y el número de neuronas en la misma región cerebral, implica que el ejercicio físico promueve la neuroplasticidad y la neurogénesis, es decir, facilita la consolidación de la memoria a largo plazo (potenciación a largo plazo, PLP) y un aprendizaje con mayor eficiencia.

-El ejercicio físico no sólo aporta oxígeno al cerebro que facilita su funcionamiento óptimo sino que, además, genera una respuesta hormonal y de determinados neurotransmisores, como la noradrenalina y  la dopamina, que son compuestos químicos que desarrollan un papel muy importante en los procesos atencionales5. En concreto, cuando estamos distraídos los niveles de noradrenalina suelen ser bajos, mientras que la dopamina es fundamental en el control de la atención y en la potenciación a largo plazo.

– Sabemos que la actividad física  mejora el estado de ánimo, puede actuar como antidepresivo y reduce el estrés. Ya sabemos los efectos negativos de la indefensión aprendida, muchas veces generada por creencias propias pesimistas. Hemos comentado en muchas ocasiones la importancia de que nuestros alumnos puedan desenvolverse en climas emocionales positivos y sosegados que les permitan tomar decisiones adecuadas.

La pregunta inmediata que nos planteamos es ¿cómo integrar la actividad física en el currículo?

 Si sabemos que la capacidad de los niños para estar atentos se incrementa después de una sesión de ejercicios físicos no muy prolongada (en torno a 20 minutos), colocar las clases de educación física al final de la jornada, como se acostumbra a hacer muy a menudo, resulta contraproducente. Además, el tiempo dedicado a estas clases parece claramente insuficiente.  Asimismo, se deberían potenciar zonas de recreo al aire libre que permitan la actividad física voluntaria y descansos regulares que propicien hacer ejercicio durante la jornada escolar, todo en beneficio de una mejor salud física, mental y académica.

La prestigiosa neurocientífica Sarah-Jayne Blakemore explica que un pequeño estudio que se llevó a cabo en Inglaterra demostró que los niños que dedicaron sólo 5 minutos a realizar ejercicios sencillos (como agitar los brazos o saltar sin desplazarse) antes de la clase mejoraban su rendimiento6. La motivación les hacía asimilar conceptos de forma más eficaz que cuando no realizaban los ejercicios. En la misma línea, Tomás Ortiz sugiere la realización de una serie de ejercicios antes de empezar la clase, algo parecido al calentamiento realizado antes de una práctica deportiva7. Estos ejercicios permitirían a los niños no sólo mejorar su rendimiento,  sino también predisponerlos física y psicológicamente para la actividad que vayan a realizar, fomentando una mayor motivación y atención hacia la misma.

La enseñanza que tenga en consideración la actividad cerebral ha  de fomentar enfoques interdisciplinares que incluyan el movimiento y la actividad física. Nuestra salud física y mental lo requiere.

Jesús C. Guillén

1 Hillman, C. H. et al., “The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children”, Neuroscience 159, 2009.

2 Para más información:  http://en.wikipedia.org/wiki/Eriksen_flanker_task

3 Hillman C. H. et al., “Aerobic fitness and cognitive development: event-related brain potential and task performance indices of executive control in preadolescent children”, Developmental Phychology 45, 2009.

4 Aberg M. et al., “Cardiovascular fitness is associated with cognition in young adulthood”, PNAS, 2009.

5 Para más información:

 https://escuelaconcerebro.wordpress.com/2012/03/04/la-atencion-un-recurso-limitado/

6 Blakemore, Sarah-Jayne;  Frith, Uta, Cómo aprende el cerebro, las claves para la educación, Ariel, 2011.

7 Ortiz, Tomás, Neurociencia y educación, Alianza Edtorial, 2009.

La nueva ciencia del sueño: algunas ideas clave e implicaciones educativas

14 septiembre, 2019 3 comentarios

El sueño es el precio que ha de pagar el cerebro para mantener su plasticidad.

Giulio Tononi

Los seres humanos pasamos una tercera parte de nuestra vida durmiendo, por lo que es difícil creer que la evolución haya permitido que el sueño no sirva para una función absolutamente vital. Y los seres humanos, curiosos por naturaleza, evolucionamos planteándonos preguntas e intentando dar respuestas a las mismas investigando de forma adecuada. En lo referente al sueño, algunas podrían ser las siguientes: ¿Por qué necesitamos dormir? ¿Cómo es posible que dediquemos tantas horas a una actividad pasiva, irrelevante en apariencia desde el punto de vista intelectual y que simplemente nos permite algo de descanso corporal? ¿No podríamos recuperarnos igual después de la actividad diurna durmiendo unas horas menos?

Lo cierto es que todavía no existen respuestas definitorias a todas las cuestiones planteadas, aunque la investigación neurocientífica en los últimos años nos está revelando información sugerente que nos puede ayudar a entender la razón del sueño. Y, efectivamente, en la actualidad sabemos que el sueño, además de permitirnos descansar y preparar el cuerpo para la vigilia, constituye una necesidad biológica, provocada activamente por nuestro cerebro, que tiene una gran incidencia en los sistema nervioso, inmunitario y endocrino (ver video) afectando todo ello a nuestra salud física, emocional y cognitiva. En el siguiente artículo en Escuela con Cerebro queremos compartir algunos estudios relevantes que, por supuesto, tienen muchas implicaciones educativas.

Regeneración durante el sueño

Es lógico pensar, al igual que ocurre con cualquier máquina, que nuestro cerebro necesite un tiempo específico para realizar una especie de mantenimiento de su maquinaria molecular y celular y optimizar así su funcionamiento. Por ejemplo, se ha demostrado que durante el sueño se eliminan mejor las toxinas no deseadas que se han ido acumulando durante la actividad diurna y cuya acumulación puede afectar negativamente a nuestra salud mental o emocional (¿verdad que te has sentido alguna vez aturdido/a o irritable cuando no dormiste bien?). Cuando dormimos, el espacio entre neuronas se ensancha, lo que mejora la circulación del líquido cefalorraquídeo entre el encéfalo y la médula espinal (Xie et al., 2013). Ello facilita la eliminación de residuos (como las beta-amiloides, sustancias precursoras de las placas amiloides características de la enfermedad de Alzheimer) llevándolos al hígado para realizar la desintoxicación.

Dormimos para poder aprender

La actividad regeneradora del sueño está en consonancia con la llamada hipótesis de la homeostasis sináptica, que está respaldada por muchas evidencias empíricas (Tononi y Cirelli, 2019). La idea básica es que el sueño sirve, básicamente, para restaurar el estado energético y la plasticidad neuronal cuando estamos despiertos. La actividad durante la vigilia incrementaría el consumo energético de las neuronas potenciando sus sinapsis y el sueño serviría para restaurar la energía consumida por las neuronas manteniendo las conexiones adecuadas y reduciendo o eliminando las conexiones innecesarias (ver figura 1). Ello nos permitiría mantener un equilibrio a nivel cerebral evitando saturaciones, conservando energía para funcionar con normalidad el día siguiente, y seguir aprendiendo utilizando los mecanismos inherentes de la plasticidad neuronal.

Figura 1. Diagrama esquemático de la hipótesis de la homeostasis sináptica (Tononi y Cirelli, 2019)

Consolidando memorias

Cada vez que evocamos una memoria la fortalecemos porque reactivamos los circuitos neuronales que la albergan. Y eso es lo que parece que ocurre durante el sueño y que permite consolidar (formación de las memorias a largo plazo) lo aprendido durante la vigilia. En determinadas regiones del cerebro, como en el hipocampo o la corteza, se generan las mismas pautas de activación que se dieron para codificar la información durante el aprendizaje. Una analogía interesante de cómo el sueño potencia el aprendizaje sería la siguiente: “se vacía un buzón lleno de cartas (memoria temporal del hipocampo); las cartas clasificadas son depositadas en una carpeta (corteza cerebral) y, a continuación, se suceden el procesamiento y las respuestas a las cartas (durante fases específicas del sueño, especialmente la de ondas lentas)”.  Un mecanismo fisiológico que podría explicar la transferencia de información desde el hipocampo a la corteza y su integración en redes neuronales ya existentes (¡qué importantes son los conocimientos previos en el aprendizaje!; ver figura 2) serían unas descargas de ondas agudas (ripples) que se dan cuando se reactivan las neuronas del hipocampo durante el sueño (Klinzing et al., 2019).

Figura 2. Cuando en la corteza existen redes neuronales relacionadas con la información novedosa, ésta deja de depender del hipocampo y se integra rápidamente en los esquemas existentes (Klinzing et al., 2019)

¿Antes o después del aprendizaje?

Muchos estudios han demostrado la importancia del sueño cuando se produce después del aprendizaje, estabilizando e integrando las memorias en el proceso de consolidación. Además, sabemos que la memoria es selectiva y que el sueño es especialmente importante para consolidar esos conocimientos que creemos que son relevantes para nosotros o que tienen un significado especial. Por ejemplo, en una interesante investigación en la que los participantes debían aprender una serie de palabras, aquellos a los que avisaron de que debían recordarlas al día siguiente obtuvieron mejores resultados que el resto (Wilhem et al., 2011).

Pero el sueño también es importante cuando precede a la tarea de aprendizaje preparando al cerebro para codificar la información novedosa que nos llega a través de los estímulos sensoriales. Una siesta de pocos minutos puede producir ciertas mejoras en la memoria de estudiantes de cualquier etapa educativa aunque parece que los mejores resultados se obtienen con periodos de tiempo más prolongados. En un estudio reciente con universitarios, a un grupo de estudiantes se les permitió dormir una siesta de 1 hora en el intermedio de una sesión de aprendizaje de 5 horas, mientras que un segundo grupo siguió estudiando y un tercero hizo un parón. 30 minutos después del final de la sesión, los estudiantes que durmieron la siesta recordaban la información relevante igual de bien que los que siguieron estudiando y mucho mejor que los que hicieron el parón. Pero una semana más tarde, esta diferencia solo se mantuvo para los que durmieron la siesta (Cousins et al., 2019; ver figura 3).

Figura 3. Los estudiantes que durmieron la siesta (en verde) recordaron mejor la información que los que siguieron estudiando (en azul) y los que hicieron un parón (en rojo; Cousins et al., 2019)

Cambios epigenéticos

Nacemos con un número determinado de genes, pero nuestra forma de vivir puede condicionar cómo se expresan esos genes. Si nos adentramos en las profundidades genéticas de la célula, llegamos a los cromosomas. Y en sus extremos hay unas porciones de ADN recubiertas de una funda protectora a base de proteínas que constituyen los telómeros. Las investigaciones de los últimos años han demostrado que los telómeros son muy importantes porque se van acortando con cada división celular y contribuyen a determinar a qué velocidad envejecen y mueren tus células (Blackburn y Epel, 2018). La buena noticia es que los extremos de nuestros cromosomas pueden alargarse contribuyendo a ello muchos de nuestros hábitos cotidianos, entre ellos el sueño, tanto su duración, como calidad y ritmo. En concreto, se ha comprobado que no dormir las horas adecuadas (menos de 7) conlleva un acortamiento de la longitud de los telómeros en hombres de la tercera edad (ver figura 4), algo que también se ha identificado en niñas y niños de 9 años de edad (James et al., 2017).

Figura 4. Las personas de la tercera edad que duermen 5 o 6 horas tienen telómeros más cortos. Si duermen más de 7 horas, la longitud de los telómeros es parecida a la de los adultos más jóvenes (Cribbet et al., 2014)

¿Y cuántas horas necesitamos dormir?

Cuando los estudios sugieren unas necesidades de sueño de unas 7 u 8 horas se refieren a adultos sanos. En el caso de la infancia y la adolescencia las necesidades son mayores (ver figura 5). Sin olvidar que existe mucha variabilidad al respecto (por ejemplo, hay un pequeño porcentaje de personas que necesita únicamente 5 o 6 horas de sueño) y que esas necesidades se pueden ver afectadas por múltiples factores, sean genéticos o ambientales. 

Figura 5. Recomendación de la American Academy of Sleep Medicine (Paruthi et al., 2016)

En cuanto a las necesidades particulares y la distribución de las horas de sueño, en la literatura científica se conoce como “alondras” a aquellas personas que madrugan más y son más productivas a primeras horas del día, mientras que los “búhos” somos personas que preferimos los horarios más tardíos y nos acostamos más tarde (como consecuencia de ello, nos cuesta más madrugar, lo cual no significa que seamos vagos). En la práctica, todos nos encontramos en un continuo entre esos dos extremos y aunque no existan evidencias de que un cronotipo sea más beneficioso que otro (también pueden cambiar) para la salud física o mental, lo que está claro es que pueden afectar a los horarios laborales o escolares. Y si ya sabíamos que en la etapa de infantil las necesidades de sueño son mayores, también el adolescente necesita dormir más que el adulto.

Búhos adolescentes

Nuestro reloj interno (ver video), el núcleo supraquiasmático del hipotálamo, hace que la glándula pineal del cerebro libere la hormona inductora del sueño llamada melatonina, que hace que nos sintamos soñolientos y cansados. Estas señales son enviadas como parte de un patrón muy predecible que se repite, aproximadamente, cada 24 horas, el ritmo circadiano, que determina el nivel de alerta y regula el sueño junto al mecanismo homeostático de sueño y vigilia que nos impulsa a dormir cuando existe necesidad. El ritmo y la intensidad de la liberación de melatonina es inversamente proporcional a luminosidad, es decir, a más luz, menos melatonina y menos sueño y, al contrario, a menos luz, más melatonina y más sueño. La actividad cíclica del núcleo supraquiasmático también regula la temperatura, incrementándose durante el día para luego disminuir durante la noche, lo cual facilitará el sueño.

Los ritmos circadianos no nos vienen preinstalados, aunque los bebés, ya a los pocos meses, se van acostumbrando a dormir más por la noche. Durante la adolescencia, se da un retraso en el ritmo circadiano (Crowley et al., 2018), o si se quiere, el adolescente se convierte en un “búho” que tiene necesidad de acostarse más tarde y dormir más. Aunque no están claras las razones por las que pasa lo comentado anteriormente (parece que existe una menor sensibilidad a la luz en la adolescencia que retrasaría la liberación de melatonina), lo que está claro es que la adolescencia constituye una atapa de grandes cambios cerebrales, también en lo referente a los patrones de sueño. De hecho, los estudios con electroencefalogramas revelan una reducción del 50 % de la fase de sueño de ondas lentas (básica para la consolidación de las memorias) y una reducción del 75 % de los picos de amplitud de las ondas delta en la fase NREM en la adolescencia (Giedd, 2009).

Incidencia sobre el rendimiento académico

Los metaanálisis revelan que la somnolencia diurna, la falta de sueño y la mala calidad del mismo conllevan un peor rendimiento académico en la infancia y la adolescencia (Dewald et al., 2010).

En lo referente a las funciones ejecutivas del cerebro, sabemos que la corteza prefrontal es muy sensible a la falta de sueño. Por ejemplo, la privación del sueño durante 24 horas conlleva una reducción en el metabolismo de la glucosa en esta región, junto a otras también básicas para un buen rendimiento cognitivo, que no se revierte completamente con una noche de sueño posterior (Satterfield y Killgore, 2019; ver figura 6).

Figura 6. Tras 24 horas sin dormir, se reduce el metabolismo de la glucosa en áreas como la corteza prefrontal o la cingulada posterior (Satterfield y Killgore, 2019)

También sabemos que el estrés perjudica el correcto funcionamiento de la corteza prefrontal y que puede ser generado por la falta de sueño. Por ejemplo, en el caso del TDAH (el cual está asociado a déficits en el funcionamiento ejecutivo), muchos adolescentes tienen problemas de sueño y un ritmo circadiano retrasado. Pues bien, se ha comprobado que existe una asociación bidireccional entre el sueño y la actividad física y que aquellos jóvenes que se ejercitan de forma moderada o vigorosa de forma diaria mejoran la cantidad y calidad de su sueño (Master et al., 2019), lo cual puede ser especialmente beneficioso para aquellos con TDAH. Y ello puede ayudar a combatir la obesidad o la diabetes tipo 2 que cada vez se dan más en la infancia y en la adolescencia.

Las tecnologías no ayudan

Evidentemente, ya existían unos déficits de sueño bastante generalizados en la población mundial antes de la irrupción de las pantallas digitales y nuestra correspondiente adicción. Pero ahora la tecnología supone un nuevo desafío para el sueño. Existen múltiples estudios que demuestran que la exposición a la luz artificial de teléfonos móviles, tabletas, ordenadores y similares, especialmente la de menor longitud de onda, como la luz azul que emiten las pantallas LED, puede inhibir la liberación normal de melatonina, retrasar el ritmo circadiano y perturbar el sueño. Por ejemplo, se comprobó que personas que leían en un libro electrónico antes de acostarse liberaban un 50 % menos de melatonina que aquellas que leían libros impresos en papel. Como consecuencia de ello, les costaba más dormirse, su sueño era menos completo conteniendo una menor fase REM y su estado de alerta por la mañana era peor (Chang et al., 2015; ver figura 7). No obstante, se requieren más investigaciones porque puede haber diferencias según el medio digital utilizado, asumiendo también que cada persona puede tener una diferente sensibilidad a la luz que afecte a su ritmo circadiano (Phillips et al., 2019).

Figura 7. Los que leen el ebook suprimen un porcentaje mayor de melatonina (ver derecha) y muestran un desfase en el ritmo circadiano (ver izquierda) respecto a los que leen el libro físico (Chang et al., 2015)

¿Y si comenzamos la jornada más tarde?

El retraso en el ritmo circadiano del adolescente se encuentra con un gran problema: el horario de inicio de la jornada escolar. Ya en el libro Neuroeducación en el aula: de la teoría a la práctica, analizamos estudios longitudinales que avalan retrasar el inicio de la jornada, aunque sabemos que esta medida topa con las necesidades laborables de las familias, e incluso con los horarios de las actividades extraescolares de los propios estudiantes. Pero en el 2019 disponemos de nuevas evidencias que confirman el impacto positivo de esta medida sobre la salud física, emocional y cognitiva del adolescente como consecuencia de la mejora de su sueño. Por ejemplo, en un estudio reciente se ha comprobado que retrasar 1 hora el inicio de la jornada escolar (de 7,30 a 8,30) de adolescentes de 15 años supone un desplazamiento en su ciclo del sueño (se acuestan y se levantan un poco más tarde) que puede conllevar una mayor duración del mismo y que puede llegar a superar la media hora (Nahmod et al., 2019). Y resultados muy parecidos se han encontrado en una investigación que ha analizado el impacto del retraso del inicio de la jornada en casi una hora (de 7,50 a 8,40), en las escuelas públicas de Seattle. En promedio, el incremento de sueño de los adolescentes ha sido de 34 minutos. Y junto a ello se ha identificado una mejora de la atención de los estudiantes en el aula y un incremento del 4,5 % en sus resultados académicos (Dunster et al., 2018; ver figura 8). La conclusión es clara, no se puede pedir a un adolescente que muestre un óptimo rendimiento cognitivo a primera hora de la mañana.

Figura 8. Mejora del sueño en el 2017 de adolescentes que empezaron más tarde la jornada escolar (en azul; Dunster et al., 2018)

¿Y entonces qué?

La investigación científica está revelando que no dormimos las horas necesarias y que ello repercute en nuestra salud a todos los niveles. A nivel educativo esto es muy relevante, porque la insuficiente cantidad y calidad del sueño de niños y adolescentes perjudica claramente su estado de ánimo y salud mental. En la infancia temprana, en concreto, el papel de las familias se ha demostrado que es fundamental estableciendo rutinas a la hora de acostarse, algo que es especialmente significativo en entornos socioeconómicos desfavorecidos (Covington et al., 2019).

Recientemente, Matthew Walker, uno de los neurocientíficos que está contribuyendo más a la ciencia del sueño, analiza en su último libro algunas ideas que nos pueden ayudar a mejorar el sueño (Walker, 2018). Recopilamos las más significativas que, por supuesto, también tienen implicaciones educativas que siempre hay que compartir con los estudiantes y las familias:

1. Mantén un horario estable de sueño, también los fines de semana.

2. Haz ejercicio físico, pero no en horarios tardíos.

3. Evita estimulantes, como la cafeína o la nicotina, y bebidas alcohólicas o comidas copiosas antes de acostarte.

4. No duermas siestas o en horario tardío si tienes problemas de sueño.

5. Establece una rutina relajante antes de acostarte que esté alejada de lo que te provoque estrés o un estado de alerta (leer en formato físico o meditar, por ejemplo).

6. Ten una habitación confortable: cama cómoda, baja iluminación, poco ruido, temperatura fresca (un poco más de 18 ºC, como máximo; por eso un baño caliente antes de dormir ayuda a mantener la temperatura corporal más baja). Y las pantallas mejor alejadas.

7. Aprovecha la luz natural diurna (es clave para regular los patrones de sueño). Y evita la luz brillante por la noche.

8. Y si no puedes dormir, no estés despierta/o un tiempo prolongado en la cama. Levántate y realiza una actividad relajante hasta que tengas sueño.

Seguimos viviendo, creciendo y, por supuesto, durmiendo y soñando. Una dulce necesidad cerebral.

Jesús C. Guillén

————————————————————————————————————————————————-

Referencias:

1. Blackburn E. y Epel E. (2018). La solución de los telómeros: Aprende a vivir sano y feliz. DeBolsillo.

2. Chang A. M. et al. (2015). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. PNAS 112, 1232–1237.

3. Cousins, J. N. et al. (2019). The long-term memory benefits of a daytime nap compared to cramming. Sleep 42 (1), 1-7.

4. Covington L. B. et al. (2019). Toddler bedtime routines and associations with nighttime sleep duration, and maternal and household factors. J Clin Sleep Med. 15(6), 865-871.

5. Cribbet M. R. et al. (2014). Cellular aging and restorative processes: subjective sleep quality and duration moderate the association between age and telomere length in a sample of middle-aged and older adults. Sleep 37, 65-70.

6. Crowley S. et al. (2018). An update on adolescent sleep: New evidence informing the perfect storm model. Journal of adolescence 67, 55-65.

7. Dewald J. F. et al. (2010). The influence of sleep quality, sleep duration and sleepiness on school performance in children and adolescents: a meta-analytic review. Sleep Med Rev. 14 (3), 179-189.

8. Dunster G. (2018). Sleepmore in Seattle: Later school start times are associated with more sleep and better performance in high school students. Science Advances 4, 1-7.

9. Giedd J. N. (2009). Linking adolescent sleep, brain maturation, and behavior. Journal of Adolescent Health 45(4), 319-320.

10. James S. et al. (2017). Sleep duration and telomere length in children. J Pediatr 187, 247-252.

11. Klinzing J. G. et al. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience:  https://www.nature.com/articles/s41593-019-0467-3

12. Master L. et al. (2019). Bidirectional, daily temporal associations between sleep and physical activity in adolescents. Scientific Reports 9 (7732), 1-14.

13. Nahmod, N. G. et al. (2019). Later high school start times associated with longer actigraphic sleep duration in adolescents. Sleep 42 (2), 1-10.

14. Paruthi S. et al. (2016). Recommended amount of sleep for pediatric populations: a consensus statement of the American Academy of Sleep Medicine. J Clin Sleep Med 12(6), 785-786.

15. Phillips A. et al. (2019). High sensitivity and interindividual variability in the response of the human circadian system to evening light. PNAS 116 (24), 12019-12024.

16. Satterfield B., Killgore W. (2019). Sleep loss, executive function, and decision-making. En Sleep and Health (Grandner ed.), Academic Press.

17. Tononi G., Cirelli C. (2019). Sleep and synaptic down‐selection. European Journal of Neuroscience. Jan 5.

18. Walker M. (2018). Why we sleep. The new science of sleep and dreams. Penguin Books.

19. Wilhelm I. et al. (2011). Sleep selectively enhances memory expected to be of future relevance. The Journal of Neuroscience 31(5), 1563-1569.

20. Xie L. et al. (2013). Sleep drives metabolite clearance from the adult brain. Science 342, 373-377.

Los siete pilares de una buena salud cerebral (y también educativa)

Cada uno de nosotros tiene un cerebro distinto, y el reto es optimizar y potenciar de forma personalizada los mecanismos salutogénicos de nuestro cerebro.
Álvaro Pascual-Leone

Todos deseamos una vida feliz, evidentemente, pero para tenerla es importante estar sanos. Y para que eso se produzca es imprescindible mantener una buena salud cerebral, tal como explica el gran neurocientífico Álvaro Pascual-Leone en el libro El cerebro que cura, publicado recientemente. Basándose en investigaciones científicas realizadas en los últimos años, los autores identifican siete pilares para una buena salud cerebral, lo cual no significa tener un cerebro joven a cualquier edad sino “un cerebro con las conexiones adecuadas, con una capacidad de inhibición de señales irrelevantes bien compensada y con la cantidad justa de plasticidad”. A nivel cerebral, el equilibrio es esencial, es decir, tan perjudicial puede ser el exceso como el defecto.

Y como desde la perspectiva neuroeducativa asumimos un aprendizaje desde, en y para la vida, el reto que nos planteamos en el siguiente artículo en Escuela con Cerebro es trasladar esos pilares básicos que nos permiten optimizar el funcionamiento cerebral, a medida que vivimos y envejecemos, al terreno educativo.

1. Salud integral

Hace tiempo que sabemos que la salud corporal afecta al cerebro. Por ejemplo, un buen funcionamiento cerebral requiere que el corazón funcione de forma adecuada. Pero también los pulmones, el estómago, los intestinos, el hígado, el páncreas, …por lo que es necesario atender a nuestro estado médico general. Este enfoque integral, es el que parece funcionar mejor para optimizar el aprendizaje y las llamadas funciones ejecutivas del cerebro. Es decir, los programas que tienen en cuenta las necesidades globales del niño, cognitivas, emocionales, sociales y físicas, yendo más allá de lo académico, son los que parece que facilitan un mejor desarrollo y funcionamiento ejecutivo del cerebro (Diamond, 2010). Y ello requiere dar mayor importancia en el aprendizaje al juego, el arte, el movimiento o la educación emocional (ver video). Por ejemplo, cuando se integran actividades artísticas en contenidos académicos de ciencias se facilita la memoria a largo plazo (Hardiman et al., 2019). Estos proyectos transdisciplinares le encantan a nuestro cerebro holístico y multisensorial. Y no solo eso, sino que sabemos que jugar, hacer teatro, practicar deporte o meditar nos puede ayudar a aprender a gestionar el estrés, una parte importante de la salud cerebral.

En la educación

La participación en la orquesta, la obra de teatro, un deporte de equipo o un buen programa de educación emocional puede suministrar oportunidades cotidianas para trabajar muy bien las funciones ejecutivas del cerebro.

2. Nutrición

A pesar de que el cerebro representa, en promedio, el 2% del peso corporal, sus necesidades energéticas pueden llegar al 25% de la energía que gasta nuestro cuerpo. Pero no todas las calorías tienen la misma incidencia sobre nuestras capacidades cognitivas y estados anímicos. Y aunque nuestro cerebro es el resultado de lo que comemos, también es muy importante cuándo lo comemos.

Más allá de alimentos concretos, un cerebro sano requiere una dieta saludable que incluya frutas, verduras frescas, pescado, o grasas saludables provenientes del aceite de oliva o de las nueces, por ejemplo. Ello caracteriza a la dieta mediterránea, que se cree que está asociada a un mejor funcionamiento cognitivo y a un menor riesgo de padecer demencia (Valls-Pedret et al., 2015; ver figura 1). Y, en concreto, parece que el desayuno puede ser importante para un buen rendimiento cognitivo, especialmente en la adolescencia. Los estudiantes que desayunan de forma regular y se alejan de la comida basura rinden mejor en la escuela y disponen de la energía necesaria en las primeras horas de la jornada escolar mejorando así la atención y la memoria (Burrows et al., 2017).

En la educación

Es muy recomendable compartir y trabajar con los estudiantes estas cuestiones a través de buenos proyectos educativos. Y también parece necesario acercar esta información a las familias.

Figura 1. Las personas que siguieron una dieta mediterránea suplementada con aceite de oliva
o nueces obtuvieron mejoras en tareas cognitivas (Valls-Pedret et al., 2015)

3. Sueño

El sueño constituye un acto imprescindible para la buena salud cerebral, dado que actúa como una especie de regenerador neuronal, algo parecido a lo que ocurre cuando vamos al gimnasio y dañamos fibras musculares, que luego se recuperan y se fortalecen con el debido aporte nutricional. Al dormir se acelera la síntesis proteica, con el consiguiente fortalecimiento de las conexiones neuronales y, en determinadas regiones cerebrales, se repite la actividad realizada durante la vigilia que nos permite consolidar las memorias y con ello el aprendizaje.

Cada rango de edad tiene unas necesidades específicas de sueño. En una publicación reciente, la American Academy of Sleep Medicine recomienda lo siguiente (Paruthi et al., 2016):

Figura 2. Horas de sueño recomendadas en los diferentes rangos de edad (Paruthi et al., 2016)

Acortar la duración recomendada podría afectar a la salud física, cognitiva o emocional, perjudicando el rendimiento académico o laboral. Todo ello es especialmente relevante en la infancia o en la adolescencia. En este último caso, se ha visto que la melatonina (la hormona que modula los patrones de sueño) se libera de forma más tardía con lo que se retrasa el ritmo circadiano del adolescente que, como consecuencia de ello, tiene una tendencia a acostarse más tarde. El inicio de la jornada escolar a las 8 h no parece lo más adecuado para ellos. De hecho, existen varios estudios que lo corroboran. Por ejemplo, Kelley et al. (2017) analizaron el impacto de cambiar el inicio de la jornada escolar de las 8,50 h a las 10 h durante dos cursos completos y comprobaron una mejora de los resultados académicos de los adolescentes, en promedio, junto a una disminución de las faltas de asistencia. En el tercer curso volvieron al inicio de las 8,50 h y empeoraron los resultados (ver figura 3).

En la educación

Si no es posible cambiar el inicio de la jornada escolar, es adecuado retrasar las tareas de mayor demanda cognitiva, especialmente en la adolescencia, hasta avanzada la mañana.

Figura 3. Los resultados académicos de los adolescentes mejoraron los dos primeros cursos
cuando el inicio de la jornada escolar fue a las 10 h en lugar de las 8,50 h (Kelley et al., 2017)

4. Ejercicio físico

El ejercicio físico también constituye una poderosa herramienta que ayuda a proteger nuestro cerebro y mantenerlo sano.

Ya conocíamos los efectos beneficiosos de la actividad física para la salud física y emocional, cómo incidía de forma positiva sobre el sistema cardiovascular, el sistema inmunológico, el estado de ánimo o sobre el estrés, por ejemplo. Pero en los últimos años la neurociencia ha revelado que el ejercicio regular puede modificar el entorno químico y neuronal que favorece el aprendizaje. Y cuando hablamos de ejercicio físico nos referimos a un tipo de actividad física que requiere un esfuerzo y constituye un reto.

Desde la perspectiva educativa, no solo se ha comprobado la importancia de dedicar más tiempo a la educación física, sino también comenzar la jornada escolar con unos minutos de actividad física o juegos activos, realizar parones activos que parece que mejoran la concentración de los estudiantes en las tareas posteriores, o facilitar una mayor libertad de movimiento para realizar las actividades. Todo ello puede incidir positivamente en el desempeño académico del alumnado. De hecho, en estudios recientes se ha comprobado que existe una correlación positiva entre la capacidad cardiorrespiratoria de los estudiantes y el volumen de sustancia blanca que permite una mejor conexión entre regiones específicas del cerebro que intervienen directamente en el aprendizaje y en el rendimiento académico del alumnado (Esteban-Cornejo et al., 2019).

Como dice el neurocientífico John Ratey (ver video), en la práctica, salir a correr unos minutos puede producir los mismos efectos que una pequeña dosis de los fármacos Concerta o Prozac, pero provocando un mayor equilibrio entre neurotransmisores y, por supuesto, de forma más natural y saludable.

En la educación

Comenzar la jornada escolar de forma activa puede ayudar a optimizar los recursos atencionales durante las tareas posteriores. El aprendizaje requiere movimiento. Bueno para el corazón, bueno para el cerebro.

5. Entrenamiento cognitivo

El entrenamiento cognitivo constituye una especie de gimnasia para el cerebro que busca optimizar su salud. A nivel cerebral se aplica aquello de “úsalo o piérdelo” porque la práctica permite fortalecer las conexiones neuronales que nos permiten consolidar las memorias y aprender. Las actividades intelectuales que constituyen verdaderos retos promueven la neuroplasticidad y la neurogénesis en regiones críticas del cerebro, y amplían la llamada reserva cognitiva que permite reducir el desarrollo de ciertas enfermedades neurodegenerativas como el Alzheimer.

Los ingredientes clave de un buen menú cognitivo son la novedad, el reto y la variedad. Y es que al cerebro le encantan las sorpresas, los desafíos continuos adecuados a las necesidades personales y una variedad de actividades que permitan una estimulación completa, dada la diversidad funcional de nuestro cerebro. Todo ello se puede trabajar de forma fantástica integrando el componente lúdico, también a través de juegos de ordenador o videojuegos adecuados. Hasta el equipo de Richard Davidson, el gran impulsor de la neurociencia contemplativa, ha analizado los beneficios de un videojuego (Crystals of Kaydor) para entrenar la empatía de los adolescentes, que consiste en una misión espacial hacia el planeta Kaydor con el objetivo de identificar las emociones básicas de sus habitantes a través de las expresiones faciales y el lenguaje corporal, lo cual requiere cooperar y adoptar conductas prosociales (Kral et al., 2018; ver figura 4).

En la educación

Integrar lo lúdico en el aprendizaje constituye una estrategia motivadora potente. Los medios digitales son un recurso al servicio de los objetivos de aprendizaje que pueden ayudar a alcanzarlos. Al cerebro le encantan las buenas preguntas y las buenas historias.

Figura 4. Seis horas jugando a Crystals of Kaydor produjo en los adolescentes mejoras
en circuitos neuronales básicos para la regulación emocional (Kral et al., 2018)

6. Socialización

Nuestro cerebro es social. Desde el nacimiento, los seres humanos estamos programados para aprender a través de la imitación. Pero no solo eso, las personas con sólidos vínculos sociales que se sienten apoyadas afrontan mejor el declive cognitivo asociado al envejecimiento y muestran mejor estado de ánimo.

En un sugerente estudio, los investigadores asignaron de forma aleatoria a los jóvenes participantes a uno de los tres grupos siguientes en los que se realizaban diferentes tareas durante 10 minutos: en el primero se debatía un problema, en el segundo se realizaban de forma colectiva crucigramas o similares y en el tercero se veía un fragmento de una famosa serie de televisión. Después de esto, todos los participantes realizaron unas pruebas de memoria de trabajo y velocidad de procesamiento. Los resultados mostraron que los participantes de los grupos que requerían interacción y cooperación obtuvieron mejores resultados en las tareas que los otros (Ybarra et al., 2008). Estar en un grupo de forma pasiva (viendo la televisión, por ejemplo) es insuficiente, hay que participar de forma activa en las relaciones sociales.

Existe toda una red de regiones cerebrales interconectadas (el llamado cerebro social; ver figura 5) que facilitan la interacción social y que promueven un aprendizaje más eficiente, todo en consonancia con la naturaleza social del ser humano. En la práctica, se ha comprobado que cuando se pide a alguien que aprenda algo para que luego se lo enseñe a los demás en lugar de plasmar esos conocimientos en un examen tradicional, retiene más información (Lieberman, 2013).

En la educación

La cooperación requiere una enseñanza específica y continuada que está vinculada al aprendizaje socioemocional. Y entre las diferentes formas de cooperar, la tutoría entre iguales constituye una necesidad educativa.

Figura 5. Red de regiones que componen el cerebro social (Kandel, 2019)

7. Plan vital

Definir y perseguir nuestros propósitos en la vida es el último pilar de una buena salud cerebral. En el famoso estudio longitudinal Nun Study of Aging and Alzheimer’s Disease, se demostró que las monjas que ya siendo jóvenes eran más alegres y mostraban una actitud más entusiasta y positiva en su misión, vivián un promedio de diez años más que las que manifestaban actitudes menos positivas, e incrementaban su reserva cognitiva. Además, algunas de estas monjas desarrollaban la enfermedad de Alzheimer a nivel cerebral, pero no manifestaban síntomas de la misma (Snowdon, 2001). Junto a esto, la investigación indica que es muy importante que el propósito personal trascienda, es decir, que los planes vitales orientados a ayudar a otras personas tienen un impacto más beneficioso sobre la salud que los dirigidos a uno mismo.

El plan vital de las personas puede cambiar durante la vida, de la misma forma que lo hace nuestro cerebro plástico. Ahora bien, es imprescindible tenerlo y recorrerlo. Al igual que en el aprendizaje, el proceso, y no el resultado, debería ser lo más importante. 

En la educación

Una verdadera escuela con cerebro no olvida el corazón, fomenta una mentalidad de crecimiento y optimiza las fortalezas de todos sus estudiantes. Y se vincula a la vida cotidiana a través de buenos proyectos sociales como los ApS (Aprendizaje-Servicio).

Jesús C. Guillén


Referencias:

1. Burrows T. L. et al. (2017). Associations between dietary intake and academic achievement in college students: a systematic review. Healthcare 5, 60.

2. Diamond, A. (2010). The evidence base for improving school outcomes by addressing the whole child and by addressing skills and attitudes, not just content. Early Educ. Dev. 21, 780-793.

3. Esteban-Cornejo I. et al. (2019). Physical fitness, white matter volume and academic performance in children: Findings from the Active Brains and FIT Kids 2 Projects. Frontiers in Psychology 10 (208).

4. Hardiman, M. et al. (2019). The effects of arts-integrated instruction on memory for science content. Trends in Neuroscience and Education, 14.

5. Kandel E. (2019). La nueva biología de la mente: Qué nos dicen los trastornos cerebrales sobre nosotros mismos. Planeta.

6. Kelley P. et al. (2017). Is 8:30 a.m. still too early to start school? A 10:00 a.m. school start time improves health and performance of students aged 13–16. Frontiers in Human Neuroscience 11 (588).

7. Kral T. et al. (2018). Neural correlates of video game empathy training in adolescents: a randomized trial.  npj Science of Learning 3.

8. Lieberman, M. D. (2013). Social: why our brains are wired to connect. Oxford University Press.

9. Paruthi S. et al. (2016). Recommended amount of sleep for pediatric populations: a consensus statement of the American Academy of Sleep Medicine. J Clin Sleep Med 12(6), 785-786.

10. Pascual-Leone A. et al. (2019). El cerebro que cura. Plataforma Editorial.

11. Snowdon D. (2001). Aging With Grace: What the Nun Study teaches us about leading longer, healthier, and more meaningful lives. Bantam Books.

12. Valls-Pedret C. et al. (2015). Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern. Med. 175, 1094-1103.

13. Ybarra O. et al. (2008). Mental exercising through simple socializing: social interaction promotes general cognitive functioning. Pers Soc Psychol Bull 34, 248-259.

Una nueva educación es necesaria y posible

La emoción es el vehículo que transporta las palabras y su significado.

Francisco Mora

El pasado fin de semana tuvimos la fortuna de asistir al I Congreso Internacional de Neuroeducación y os queremos agradecer que hicierais posible tal evento. Durante dos días repletos de emociones positivas, pudimos compartir nuevas miradas educativas con investigadores, profesores, estudiantes, familias…, en definitiva, con personas entusiastas que creen que una nueva educación es necesaria y que la hacen posible día tras día. Y en la fase final del encuentro, la extraordinaria neurocientífica y divulgadora Marta Portero nos resumió algunas de las ideas clave que se analizaron en las ponencias –muchas de esas ideas también se abordaron en las comunicaciones– y que tienen grandes implicaciones educativas. A continuación, comentamos de forma breve algunas de estas cuestiones y las acompañamos con los fantásticos resúmenes visuales realizados, en vivo y en directo, por la magnífica Lucía López. Y no están todos los que son.

Figura 1

1. Las experiencias cambian nuestro cerebro durante toda la vida
Nuestro sistema nervioso tiene la capacidad de modificarse y ajustarse a los cambios. Esta propiedad intrínseca del sistema nervioso, conocida como neuroplasticidad, y que permite formar nuevas conexiones neuronales y fortalecer o debilitar otras ya existentes, es la responsable de que el cerebro esté remodelándose y adaptándose continuamente a partir de las experiencias que vivimos, y de que podamos aprender durante toda la vida. En este proceso resulta imprescindible ir vinculando la nueva información con los conocimientos previos del alumnado para ir consolidando las memorias (algo especialmente relevante durante el sueño; Groch, 2017) y fomentar la necesaria mentalidad de crecimiento, tanto en la escuela como en la familia. Qué perjudiciales resultan las etiquetas o estereotipos que chocan con lo que sabemos hoy día sobre nuestro cerebro plástico y que dañan gravemente las creencias del estudiante sobre su propia capacidad.

Figura 2

2. El cerebro no finaliza su maduración hasta pasada la adolescencia
Los estudios con neuroimágenes de los últimos años han revelado que durante la adolescencia se produce una gran reorganización de las redes neurales, lo cual conduce a un funcionamiento cerebral diferente del que se da en la infancia o en la vida adulta. El cerebro del adolescente no es el cerebro envejecido de un niño ni el de un adulto en proceso de formación; simplemente, opera de forma singular. Conocer el desarrollo del cerebro en esta etapa de la vida nos permitirá distinguir mejor las conductas típicas de la adolescencia de las asociadas a muchas enfermedades mentales que aparecen a estas edades, como el trastorno de ansiedad, la depresión o la esquizofrenia. Y este periodo, en el cual el cerebro es tremendamente plástico, constituye una oportunidad fantástica para el aprendizaje, el desarrollo de la creatividad y el crecimiento personal del alumnado (Blakemore, 2018). Desde la perspectiva educativa más no es mejor. Y la genética condiciona, no determina. La educación debería potenciar nuestras características genéticas y ayudarnos a aprender con todo nuestro potencial.

Figura 3

3. Aprendemos todos de manera diferente
Como cada una de nuestras experiencias tiene un impacto singular, la plasticidad hace que nos podamos liberar de los determinismos genéticos y que cada cerebro sea único. Además, el ritmo de aprendizaje y de maduración cerebral es singular, más allá de ciertos patrones de activación similares (Giedd et al., 2015). En la práctica, constituye una auténtica necesidad educativa y social que puedan aprender juntos estudiantes totalmente diferentes, porque eso es lo que ocurre en la vida cotidiana.
En las aulas que intentan atender la diversidad se crean nuevos espacios de aprendizaje, se priorizan los ritmos de aprendizaje de los estudiantes por encima de los calendarios escolares, se coopera —a todos los niveles—, se aprende de forma activa y se fomenta la autonomía del alumnado al hacer que se responsabilice de su trabajo. No es una clase convencional que incorpora alumnos con necesidades específicas o con discapacidades, sino una clase en la que conviven y aprenden personas diferentes, sean cuales sean sus diferencias, sin excepción. Cuando se acepta la diversidad en el aula, se reconocen y aprovechan los puntos en común y las diferencias y se asume con naturalidad que podemos desenvolvernos bien en algunas materias y no tanto en otras.

Figura 4

4. Sin atención no hay aprendizaje
La atención nos permite seleccionar los estímulos a los que queremos dar prioridad, controlar nuestras acciones y, además, requiere un nivel adecuado de activación. Pero, ante todo, la atención es un recurso muy limitado que es imprescindible para que se dé el aprendizaje, por lo que puede resultar útil fraccionar el tiempo dedicado a la clase en bloques con los respectivos parones. En la práctica, queremos que el nivel de activación del estudiante sea el adecuado. Los extremos son perjudiciales, tanto el defecto (dormidos), como el exceso (ansiosos o sobreestimulados). De entre las diferentes redes atencionales que han identificado los estudios con neuroimágenes, existe una especialmente importante: la red de control o atención ejecutiva. El ejercicio, los entornos naturales y ciertas técnicas de meditación pueden ayudar a mejorar el desempeño y la concentración de los estudiantes durante las tareas posteriores (Posner et al., 2015).
Figura 5.png

5. Es clave cooperar, dialogar y compartir para aprender
Es evidente que nuestro cerebro está tremendamente comprometido con las cuestiones sociales, porque no cesamos de pensar en ellas en ningún momento del día. Las experiencias cotidianas nos permiten interactuar y conectarnos con los demás a través de las expresiones faciales, la mirada o el contacto físico. Y esta parece ser la razón que nos hizo únicos a los seres humanos.
Una estrategia muy útil en el aula (ver video inicial) cuando los docentes somos incapaces de explicar de forma adecuada a un alumno un determinado concepto consiste en pedir a un compañero suyo, que sí que lo ha entendido, que se lo explique. En muchas ocasiones, el alumno que acaba de aprender algo conoce las dificultades que ha tenido para hacerlo mejor incluso que el propio profesor, al cual le puede parecer obvio lo que aprendió hace mucho tiempo. Esta situación en la que los alumnos se convierten en profesores de otros —tutoría entre iguales— beneficia el aprendizaje de todos ellos (Smith et al., 2009). Y es que desde el nacimiento estamos programados para aprender a través de la imitación y la interacción. Nuestro cerebro es social.

Figura 6

6. Desarrollar las funciones ejecutivas en el aula
Estas funciones tan importantes para la vida cotidiana están vinculadas al proceso madurativo de la corteza prefrontal y resultan imprescindibles para el éxito académico y el bienestar personal del estudiante. Las funciones ejecutivas que la gran mayoría de investigadores considera como básicas son el control inhibitorio, la memoria de trabajo y la flexibilidad cognitiva, las cuales permiten desarrollar otras funciones complejas como el razonamiento, la resolución de problemas y la planificación.
Existen diferentes formas de entrenar directamente las funciones ejecutivas, como puede ser a través de programas informáticos, de ejercicio físico, de educación emocional o promoviendo el bilingüismo en la infancia. Sin embargo, Adele Diamond, una de las pioneras en el campo de la neurociencia del desarrollo, sugiere que las intervenciones más beneficiosas son aquellas que trabajan las funciones ejecutivas de forma indirecta, incidiendo en lo que las perjudica —como el estrés, la soledad o una mala salud— y provocando mayor felicidad, vitalidad física y un sentido de pertenencia al grupo (Diamond y Ling, 2016). Seguramente, el entrenamiento puramente cognitivo no sea la forma idónea de mejorar la cognición. El éxito académico y personal requiere atender las necesidades sociales, emocionales y físicas de los niños. O si se quiere, nada mejor para facilitar un aprendizaje eficiente y real que promover la educación física, el juego, la educación artística y la educación socioemocional.

Figura 7

7. La mirada, el vínculo y la expectativa del maestro condiciona el aprendizaje de los estudiantes
Hoy más que nunca el progreso requiere trabajar en equipo, saber comunicarse, empatizar, controlar los impulsos o establecer relaciones adecuadas. Para todo ello se necesita una buena educación emocional (en la que tiene que participar toda la comunidad, por supuesto), aquella que mediante un proceso continuo nos permite potenciar toda una serie de competencias emocionales y sociales básicas que no han de sustituir a las cognitivas, sino que las han de complementar. Si entendemos la educación como un proceso de aprendizaje para la vida, los programas de educación emocional resultan imprescindibles, porque contribuyen al bienestar personal y social. Y tienen una incidencia positiva sobre el rendimiento académico del alumnado (Durlak et al., 2011).
Cuando en el aula se respira un clima emocional positivo, el alumno se encuentra seguro porque sabe que se asume con naturalidad el error, se fomenta un aprendizaje activo en el que se sabe protagonista, se suministran retos adecuados y existen siempre expectativas positivas por parte del profesor hacia sus alumnos, con lo que se evitan esas etiquetas tan contraproducentes para el aprendizaje.

Figura 8

8. El movimiento es crítico para el desarrollo del cerebro y para la consolidación de la memoria
Podríamos decir que, desde una perspectiva evolutiva, el movimiento constituye una necesidad grabada en nuestros genes. En los últimos años la neurociencia ha revelado que el ejercicio regular puede modificar el entorno químico y neuronal que favorece el aprendizaje, es decir, los beneficios son también cognitivos (Donnelly et al., 2016).
La actividad física tiene un impacto positivo en el funcionamiento del hipocampo (imprescindible en la consolidación de la memoria), en la liberación de importantes neurotransmisores y en el desarrollo de las funciones ejecutivas.
Como ya sabían los clásicos (la enseñanza debe ser por la acción, mantenía John Dewey sin tener conocimientos de neurociencia) aprendemos mejor las cosas a través de la práctica y no a partir de la escucha abstracta. Podemos decir que los sistemas sensoriales y motores que gobiernan el cuerpo están enraizados en los procesos cognitivos que nos permiten aprender. O como le gusta decir a Giacomo Rizzolatti, el descubridor de las neuronas espejo, el cerebro que actúa es un cerebro que comprende. Y nada mejor para mantenernos activos que integrar el componente lúdico en el aprendizaje.

Figura 9

Una nueva educación es posible, efectivamente. Asumiendo siempre que el proceso de transformación parte de uno mismo. Para luego ir amplificando el mensaje evaluando con sentido crítico todo lo que se hace. Y para ello es necesario el conocimiento de las evidencias empíricas que provienen de las investigaciones científicas que irán vinculando, cada vez más y mejor, neurociencia y educación. Como dijo el gran Josechu (José Ramón Gamo): “Educamos para que la gente sea capaz de soñar utopías”. Visualicemos el cambio y el sueño se irá convirtiendo en realidad. No hay excusas.

Figura 10

Jesús C. Guillén

Referencias:
1. Blakemore S. J. (2018). Inventing Ourselves: The Secret Life of the Teenage Brain. London: Doubleday.
2. Diamond A., Ling D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18, 34-48.
3. Donnelly J. E. et al. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review: American College of Sports Medicine Position Stand. Medicine and Science in Sports and Exercise, 48, 1197–1222.
4. Durlak, J.A. et al. (2011). The impact of enhancing students’ social and emotional learning: a meta-analysis of school-based universal interventions. Child Development, 82, 405-432.
5. Giedd J. N. et al. (2015). Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology, 40(1), 43-49.
6. Groch S. et al. (2017). Prior knowledge is essential for the beneficial effect of targeted memory reactivation during sleep. Scientific Reports 7:39763.
7. Posner M. et al. (2015). Enhancing attention through training. Current Opinion in Behavioral Sciences, 4, 1-5.
8. Smith M. K. et al. (2009). Why peer discussion improves student performance on in-class concept questions. Science, 323, 122-124.

Diez elementos clave en la acción educativa

Tenemos un sistema educativo muy primitivo. En parte, porque aún falta por saber cómo funciona nuestro cerebro durante el aprendizaje y, en parte, porque lo que se sabe no se aplica.

Torsten Wiesel

Antecedentes
Hace cinco años que identificamos en Escuela con Cerebro, a través del artículo ‘Neuroeducación: estrategias basadas en el funcionamiento del cerebro’, algunas de las evidencias empíricas que provienen de las ciencias cognitivas que tienen implicaciones pedagógicas relevantes. Tres años más tarde actualizamos esa información en el artículo publicado en Niuco ‘Las claves de la neuroeducación’ (ver figura 1), que se ha analizado de forma más profunda en el libro reciente Neuroeducación en el aula: De la teoría a la práctica, un acercamiento de la ciencia del cerebro al aula en el que se hace confluir la teoría con las aplicaciones prácticas. Siempre interpretando de forma adecuada la información que proviene de ese suministro continuo de pruebas que constituye la ciencia, algo en lo que también incidimos en el libro Neuromitos en educación: el aprendizaje desde la neurociencia.

8 factores en diagramaFigura 1

Este mismo año, junto a Anna Forés, hemos creado un modelo en el que identificamos 10 factores que tienen el respaldo empírico de las investigaciones y que creemos que pueden ser importantes en la acción educativa, como en la planificación y desarrollo de la unidad didáctica, por ejemplo. Este modelo se analiza en profundidad en el capítulo ‘¿Qué nos dice la neuroeducación acerca de las pedagogías emergentes?’ del libro Pedagogías emergentes: 14 preguntas para el debate, recientemente publicado. A continuación compartimos cuáles son estos factores en un breve resumen (ver figura 2). Los tres primeros son anteriores a la ejecución de la propuesta pedagógica; los elementos interiores del hexágono hacen referencia a la realización de la propuesta, siendo el 7 (evaluación formativa y feedback) un factor transversal que está presente en todo el proceso. Y los últimos elementos, el 9 y el 10, tendrían mayor incidencia después de la acción educativa propiamente dicha.

Modelo2Figura 2

1. Cooperación del profesorado
En los centros educativos se habla mucho de la importancia del trabajo cooperativo, pero este no se limita al alumnado y requiere un aprendizaje socioemocional previo que, en el aula, siempre parte de nuestra formación. Un trabajo eficaz entre el profesorado en la planificación curricular, en el análisis y mejora de las prácticas educativas o en la evaluación del aprendizaje constituye una de las estrategias que inciden más en el rendimiento académico del alumnado. Si los profesores somos capaces de cooperar de forma adecuada podremos generar entornos de aprendizaje propicios en los que las expectativas sean positivas y una cultura de centro capaz de abrirse a toda la comunidad educativa y a la sociedad. Todo en consonancia con nuestro cerebro plástico y social.
Para saber más:
Donohoo J. (2017). Collective efficacy: how educators’ beliefs impact student learning. Thousand Oaks: Corwin.

2. Evaluación inicial
Nuestro cerebro está constantemente comparando la información almacenada con la novedosa. Como vamos aprendiendo en un proceso continuado en el que se van integrando las ideas nuevas en las ya conocidas a través de la asociación de patrones, resulta imprescindible identificar los conocimientos previos del alumnado.
Esto se puede hacer, por ejemplo, a través de formularios, mapas conceptuales, debates, preguntas abiertas, rutinas de pensamiento, plataformas digitales como AnswerGarden, etc. Constituye el punto de partida antes de abordar un tema o una unidad didáctica, para poder adaptar la planificación prevista a la evolución de cada estudiante.
Hay algunas preguntas que nos podríamos plantear:
• ¿Qué tiempo durará la evaluación inicial?
• ¿Cómo haré la evaluación inicial?
• ¿En qué momento anterior a la unidad didáctica debo hacer la evaluación inicial?
• ¿Tendré tiempo tras conocer los resultados de la evaluación inicial para preparar y/o modificar mi planificación didáctica?
Para saber más:
Sousa D. A. (2015). Brain-friendly assessments: what they are and how to use them. West Palm Beach: Learning Sciences International.

3. Objetivos de aprendizaje y criterios de éxito
Los objetivos de aprendizaje constituyen un punto de partida fundamental en la planificación de la unidad didáctica, pero para que puedan alcanzarse es imprescindible que el profesor sea capaz de comunicar y compartir con el alumnado, de forma clara y precisa y en toda la experiencia de enseñanza y aprendizaje, qué conocimientos, actitudes, valores o competencias son útiles en el proceso. Junto a ello, los criterios de éxito, si son claros y concretos, permitirán a los estudiantes conocer cómo y cuándo alcanzan los objetivos de aprendizaje. Y también podemos involucrarlos en su creación, por supuesto. Las investigaciones revelan que el reto, compromiso, confianza, expectativas altas y comprensión constituyen componentes esenciales del aprendizaje vinculados a los objetivos de aprendizaje y a los criterios de éxito.
Para saber más:
Hattie, J. (2012). Visible learning for teachers. Maximizing impact on learning. London: Routledge.

4. Atención
La neurociencia ha confirmado que la atención no constituye un proceso cerebral único ya que existen diferentes redes atencionales que hacen intervenir circuitos neuronales, regiones cerebrales y neurotransmisores concretos, y que siguen procesos de desarrollo distintos. Especialmente relevante en educación es la red de control o atención ejecutiva que permite al estudiante focalizar la atención de forma voluntaria inhibiendo estímulos irrelevantes. A parte de ciertos programas informatizados, se han comprobado los beneficios del ejercicio físico y del mindfulness sobre esta atención ejecutiva.
Si la atención es un recurso limitado y a los niños y a los adolescentes les cuesta focalizarla durante periodos de tiempo prolongados resultará muy útil fraccionar el tiempo dedicado a la clase en bloques con los respectivos parones que pueden ser activos, por supuesto. El juego y el ejercicio físico constituyen estrategias potentes para optimizar los procesos atencionales que son imprescindibles para el aprendizaje.
Para saber más:
Posner M. I., Rothbart M. K., Tang Y. Y. (2015): “Enhancing attention through training”. Current Opinion in Behavioral Sciences 4, 1-5.

5. Pensamiento crítico y creativo
El aprendizaje requiere dotar de sentido y significado lo que se está trabajando. Las necesidades educativas en los tiempos actuales van más allá de los contenidos curriculares concretos. Requieren la adquisición de competencias básicas, como la creatividad, el pensamiento crítico o la resolución de problemas, que fomentan un pensamiento de orden superior y vinculan el aprendizaje a la vida cotidiana. Y una buena estrategia para facilitar un aprendizaje real y profundo reside en la utilización de metodologías híbridas inductivo-deductivas que combinan transmisión y cuestionamiento. Enfoques como el Peer Instruction o el Flipped Learning que sacan la transmisión de información fuera de la clase y liberan mucho tiempo de la misma para que los alumnos puedan ser protagonistas activos del aprendizaje, son buenos ejemplos de ello. En esta situación, las tecnologías digitales pueden ser herramientas potentes facilitadoras del aprendizaje.
En lo referente a la creatividad, sabemos que es una capacidad que no es innata y que puede fomentarse en cualquier materia, etapa educativa o estudiante. Y una estupenda forma de potenciar un aprendizaje más abierto, reflexivo y creativo consiste en integrar las actividades artísticas en los contenidos curriculares identificados.
Para saber más:
Freeman S. et al. (2014): “Active learning increases student performance in science, engineering, and mathematics”. Proceedings of the National Academy of Sciences 111 (23), 8410-8415.

6. Trabajo cooperativo
El aprendizaje constituye un proceso social. En la vida compartimos, aprendemos y vivimos junto a otras personas, pero esas situaciones de aprendizaje no prevalecen en muchas escuelas. Se aprende en grupo, pero no como grupo. Al crearse el adecuado vínculo emocional entre los compañeros se genera un sentido de pertenencia a la clase y a la escuela que facilita el buen desarrollo académico y personal del alumnado. Como confirman estudios muy recientes, cuando nos sentimos socialmente apoyados mejoran nuestras funciones ejecutivas del cerebro.
Cuando los estudiantes han adquirido mayor experiencia en este tipo de trabajo, ya pueden realizar mejor proyectos cooperativos. Como en el caso del aprendizaje-servicio, una propuesta educativa que consiste en aprender haciendo un servicio a la comunidad. Este tipo de proyectos son los que parece que inciden más en el aprendizaje del alumnado.
Asimismo, se han comprobado los beneficios de la tutoría entre iguales, una situación en la que los estudiantes se convierten en profesores de otros compañeros. La simple expectativa de la acción cooperativa es suficiente para liberar la dopamina que fortalecerá el deseo de seguir cooperando.
Para saber más:
Lieberman, M. D. (2013). Social: why our brains are wired to connect. Oxford: Oxford University Press.

7. Evaluación formativa y feedback
Tradicionalmente, los profesores nos hemos centrado en transmitir de forma correcta los conocimientos y no tanto en entender las causas por las que los alumnos no los comprenden. Pero si lo verdaderamente importante es el aprendizaje, especialmente de competencias, deberíamos disponer de una gran variedad de actividades que nos permitieran ver cómo se va gestando el aprendizaje del alumno, identificando sus fortalezas y analizando los errores que les permitan seguir mejorando. Y ese tendría que ser el gran objetivo de la evaluación: impulsar el aprendizaje a través de un proceso continuo.
Los estudios sugieren que una buena evaluación formativa se caracteriza por:
1. Clarificar y compartir los objetivos de aprendizaje y los criterios de éxito.
2. Obtener información clara sobre el aprendizaje del alumno a través de distintas formas de evaluación (sean formales o informales como, por ejemplo, a través de debates en el aula, cuestionarios o tareas concretas de aprendizaje).
3. Suministrar feedback formativo a los alumnos para apoyar su aprendizaje.
4. Promover la enseñanza entre compañeros y la coevaluación.
5. Fomentar la autonomía del alumno en el aprendizaje a través de la autoevaluación y la autorregulación.
Para saber más:
Heitink M. C. et al. (2016): “A systematic review of prerequisites for implementing assessment for learning in classroom practice”. Educational Research Review 17, 50-62.

8. Memoria
Dejando aparte los sucesos emocionales que se graban en nuestro cerebro de forma más directa, en situaciones normales (o si se quiere, menos emotivas) disponemos de distintos tipos de memoria que activan diferentes regiones cerebrales. En el aula es especialmente importante la memoria explícita, la cual requiere un enfoque más asociativo en el que la reflexión, la comparación y el análisis adquieren un gran protagonismo.
Las investigaciones demuestran que cuando se distribuye la práctica en el tiempo, los estudiantes aprenden mejor y tienen más tiempo para reflexionar sobre lo que están aprendiendo. Y, además, constituye una estupenda forma de optimizar la motivación de logro y combatir el aburrimiento que pudiera ocasionar la repetición de una tarea cuando no existe la necesaria variedad en la misma. Junto a ello, se ha comprobado que cada vez que intentamos recordar modificamos nuestra memoria y este proceso de reconstrucción del conocimiento tiene una gran incidencia en el aprendizaje, tanto el asociado a hechos concretos como a inferencias. Esta técnica se puede incorporar fácilmente en el aula durante el desarrollo de la unidad didáctica a través de pequeños cuestionarios utilizando, por ejemplo, recursos digitales conocidos.
Para saber más:
Dunlosky J., et al. (2013): “Improving students’ learning with effective learning techniques: promising directions from cognitive and educational psychology”. Psychological Science in the Public Interest 14(1), 4-58.

9. Metacognición
La metacognición nos permite valorar nuestros propios pensamientos. Hace que seamos conscientes de las estrategias que seguimos al resolver problemas, y que evaluemos la eficacia de las mismas para poder cambiarlas si no dieran el resultado deseado. Diversos estudios muestran la importancia de que el estudiante se plantee preguntas durante las tareas de aprendizaje que le permitan explicarse y reflexionar sobre lo que está haciendo, intentando relacionar los nuevos conocimientos con los previos.
Se ha comprobado la utilidad de realizar descansos durante el estudio para reflexionar sobre el propio aprendizaje. También resulta interesante reforzar la conciencia del propio conocimiento creando palabras clave. Cuando se les pide a los estudiantes que generen unas pocas palabras que resuman un tema concreto mejoran su metacognición y distribuyen mejor su tiempo de estudio. Asimismo, la meditación parece mejorar también la metacognición.
Para saber más:
Diamond A., Ling D. S. (2016): “Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not”. Developmental Cognitive Neuroscience 18, 34-48.

10. Impacto del aprendizaje
Una unidad didáctica no debería terminar cuando se cumple el plazo temporal previsto sino cuando el profesor analiza cuál ha sido el impacto sobre el aprendizaje del alumno en relación a los objetivos y los criterios de éxito inicialmente identificados. Porque lo verdaderamente necesario es garantizar el aprendizaje de todos y, en el caso de no producirse, ser flexible y cambiar las estrategias de enseñanza cuando sea necesario.
La esencia del aprendizaje radica en poder aplicar lo que hemos aprendido en un determinado contexto a otros nuevos contextos. Esa transferencia tan importante que hace que los estudiantes tomen las riendas de su propio aprendizaje puede favorecerse a través de la metacognición, la diversificación de las tareas de aprendizaje, el uso de analogías y diferencias, metáforas,…, en definitiva, a través de la práctica. Pero una práctica que tiene sentido y significado para la vida del estudiante y en la que el feedback frecuente es un elemento imprescindible para fomentar su autorregulación. Por eso es interesante permitir a los estudiantes explorar sus propios intereses a través de nuevos problemas o proyectos que conecten con su aprendizaje previo.
Para saber más:
Hattie J. (2015): “The applicability of visible learning to higher education”. Scholarship of Teaching and Learning in Psychology 1(1), 79–91.

En la práctica, uno de los grandes retos educativos es el de permitir que los profesores trabajen de forma cooperativa analizando el aprendizaje y convirtiéndolo en un proceso de investigación real. Porque es muy importante conocer qué prácticas educativas son útiles pero también conocer las razones por las que son útiles y así poder adaptarlas al contexto concreto del aula. En eso consiste la neuroeducación, en educar con cerebro para mejorar los procesos de enseñanza y aprendizaje. Sin olvidar el corazón.
Jesús C. Guillén

La conexión cuerpo y cerebro en el aprendizaje

El cuerpo y el cerebro se hallan inmersos en una danza interactiva continua. Los pensamientos que son implementados en el cerebro pueden inducir estados emocionales que son implementados en el cuerpo, mientras que el cuerpo puede cambiar el paisaje del cerebro y, de este modo, el sustrato que sustenta los pensamientos.

Antonio Damasio

A diferencia de lo que creíamos años atrás, el cuerpo no es simplemente un aparato de comunicación bidireccional para el cerebro, sino que desempeña un papel crucial en los procesos cognitivos (cognición corporizada). O si se quiere, los sistemas sensoriales y motores que gobiernan el cuerpo están enraizados en los procesos cognitivos que nos permiten aprender. Giacomo Rizzolatti -el descubridor de las neuronas espejo- lo resume muy bien: “El cerebro que actúa es un cerebro que comprende”. Las implicaciones educativas son enormes porque, además, el aprendizaje es un proceso social. ¡Dichosas neuronas espejo!

El poder del movimiento

Las investigaciones sugieren que el ejercicio constituye una estupenda estrategia para mantener una buena salud física, pero también mental. La actividad física incrementa los niveles de la proteína BDNF que está asociada a la mejora de la plasticidad sináptica, la neurogénesis o la vascularización cerebral, procesos imprescindibles para un buen funcionamiento cerebral y aprendizaje. El ejercicio físico tiene un impacto positivo en el funcionamiento hipocampo, en la liberación de importantes neurotransmisores y en el desarrollo de las funciones ejecutivas del cerebro, básicas para el rendimiento académico y desarrollo personal del alumnado. Por ejemplo, simples parones de 4 minutos en la actividad académica diaria de niños con edades entre 9 y 11 años para realizar ocho ciclos de movimientos rápidos (saltos, sentadillas o similares) durante 20 segundos, seguidos de descansos de 10 segundos, son suficientes para optimizar la atención necesaria que requiere la tarea posterior y mejorar el desempeño en la misma (Ma et al., 2015; ver figura 1).

Existen diversas evidencias empíricas que sugieren una asociación entre los procesos motores y cognitivos en el desarrollo y aprendizaje temprano. Estudios con neuroimágenes muestran que tareas que activan la corteza prefrontal -sede de las funciones ejecutivas-, también activan regiones básicas para el procesamiento motor, especialmente el cerebelo. La función de esta estructura de la parte posterior del tronco del encéfalo parece que va más allá de la coordinación de los movimientos y el aprendizaje motor (Wagner et al., 2017). Y, junto a esto, niños con dificultades de aprendizaje -asociadas al TDAH o a la dislexia, por ejemplo- a menudo manifiestan déficits motores. Pues bien, parece que tanto las funciones ejecutivas del cerebro como las habilidades motoras finas predicen un mejor aprendizaje en la etapa de educación infantil (Cameron et al., 2012).

El poder de los dedos

En prácticamente todas las culturas los niños aprenden a contar con los dedos. Es una actividad sensorial y motriz que se realiza antes de que el cálculo se automatice y se convierta en un proceso puramente mental. Contar con los dedos se suele considerar una estrategia inadecuada que una buena educación eliminará. Sin embargo, constituye una acción precursora importante para el aprendizaje de la base 10 y, según Dehaene (2016), las representaciones cerebrales de los números y la disposición de la mano obedecen a principios de organización muy similares. Parece que la calidad del manejo de los dedos, algo que podemos cultivar en la infancia, es importante para el desarrollo de la capacidad aritmética. Los estudios sugieren que los niños que en la etapa de educación infantil manejan mejor sus dedos se desenvolverán mejor después en matemáticas, y que el entrenamiento de los dedos en niños de 6 años mejora las competencias numéricas (Gracia-Bafalluy y Noël, 2008). Relacionado con lo anterior, Vallée-Tourangeau y sus colaboradores (2016 a) han comprobado que cuando se les permite a los participantes de los experimentos manipular objetos, en lugar de utilizar una tableta electrónica para realizar los cálculos, se facilita la resolución creativa de los problemas del tipo: ‘¿Cómo colocarías 17 animales en 4 parcelas de forma que haya un número impar en cada una de ellas? (ver figura 2) Y la utilización con las manos de fichas numéricas reduce la temida ansiedad matemática y mejora la capacidad aritmética cuando se han de realizar cálculos mentales largos (Vallée-Tourangeau et al., 2016 b).

Por otra parte, en el contexto lingüístico se ha comprobado lo útil que resulta enseñar a los niños ejercicios en los que van trazando las letras con los dedos. Añadir los estímulos visuales y auditivos a la exploración háptica, a través de la práctica de los gestos de la escritura, acelera el aprendizaje de la lectura (Fredembach et al., 2009). Y desde la neurociencia parece haberse encontrado la justificación: existen rutas neurales diferentes asociadas al reconocimiento de objetos y a su orientación. Ante las letras estáticas se activa una región del sistema visual que acaba especializándose en el reconocimiento de las letras: la llamada ‘caja de letras del cerebro’. Pero cuando las letras están en movimiento, al escribirlas en cualquier lengua, se activa una región de la corteza premotora izquierda asociada a los gestos: el área de Exner (Nakamura et al., 2012). Y es que los gestos son también muy importantes para el aprendizaje.

El poder de los gestos

Las personas ciegas de nacimiento gesticulan pese a no haberlo visto nunca. Esto sugiere que nuestra capacidad gestual es innata y que podemos gesticular para nuestros interlocutores pero también para nosotros mismos.

En los últimos años se han realizado interesantes experimentos que demuestran que puede ser muy beneficioso animar a los estudiantes a que utilicen sus manos en sus explicaciones porque ello puede revelar conocimientos implícitos y contribuir a que se asimile la información novedosa. La investigadora Susan Goldin-Meadow analizó el famoso experimento de Piaget en el que niños de 6 años ven dos filas de objetos y han de decidir en cuál de ellas hay más. La trampa consiste en que, aunque ambas filas contienen el mismo número de objetos, en una de ellas están más espaciados. Y ello hace que los niños respondan que hay más objetos en la fila más larga. Sin embargo, cuando se analizan los gestos de sus explicaciones, se observa que transmiten cosas diferentes. Algunos extienden los brazos denotando con su gesto que una fila es más larga que otra. Otros, en cambio, mueven las manos identificando una correspondencia entre los objetos de cada fila. Es decir, aunque no saben expresarse con palabras, sus expresiones corporales sugieren que han descubierto la esencia del problema (Goldin-Meadow, 2017; ver figura 4). Y los maestros podemos utilizar esta información para mejorar la enseñanza y el aprendizaje.

Además de reflejar lo que sabemos, los gestos pueden mejorar nuestra forma de pensar si esa capacidad se estimula de forma adecuada. Enseñar a los niños a expresarse con gestos mientras hablan puede acelerar su aprendizaje. Por ejemplo, cuando se les pidió a estudiantes de tercero y cuarto de primaria que resolvieran ecuaciones del tipo 2 + 5 + 7 = _ + 7, por primera vez, no eran capaces de resolverlas. Tras ello se pidió a un grupo que moviera las manos para explicar las respuestas y el otro debía hacerlo solo con palabras. A continuación, se les explicó a todos el procedimiento para resolver las ecuaciones y se les propuso otras diferentes. Se comprobó que los alumnos que habían gesticulado antes de la enseñanza resolvieron más ejercicios que no aquellos que mantuvieron las manos quietas. Parece que el movimiento de manos les había ayudado a asimilar la información explicada. Asimismo, algunos niños expresaban con sus gestos formas alternativas de resolución (señalar el 2, el 5 y el 7 del primer miembro de la ecuación y hacer un gesto de supresión en el 7 del miembro de la derecha). Los gestos reflejaban un conocimiento implícito de los niños y ayudaban a mantenerlo activo en sus mentes. Y, junto a lo anteriormente comentado, también se ha observado que los gestos del maestro pueden transmitir información precisa, pero también pueden inducir al error. En ecuaciones del tipo 2 + 3 = x + 1, si acompañamos la explicación con gestos manuales que señalan los números del miembro de la izquierda, nos paramos al llegar al igual y luego señalamos los números del miembro de la derecha, se transmite la información bien. Cosa que no ocurre si vamos señalando de forma seguida los términos de ambas ecuaciones. En esa situación, el alumno puede interpretar que se han de sumar todos los números (Goldin-Meadow, 2017).

La gestualidad corporal puede contribuir al aprendizaje en otros contextos, como en el lingüístico. En unos interesantes experimentos se comprobó que cuando niños de primaria manipulaban juguetes simulando la acción de lo que estaban leyendo mejoraban la comprensión del texto e incrementaban su vocabulario. Y los mismos efectos se conseguían cuando los maestros enseñaban a los niños a imaginar esas simulaciones (Glenberg, 2011).

Por otra parte, se ha comprobado que cuando acompañamos una palabra o frase con un gesto es más fácil recordarla, lo cual tiene muchas implicaciones pedagógicas. Su utilidad se ha comprobado en la enseñanza de nuevos idiomas, en donde suelen utilizarse estrategias audiovisuales en el aprendizaje de nuevo vocabulario que se olvidan con rapidez. Parece que acompañar las palabras con gestos que las representan implica a redes sensoriales y motoras extensas que involucran a la memoria explícita (consciente), pero también a la memoria implícita (inconsciente), y ello podría favorecer la consolidación del nuevo vocabulario (Macedonia y Mueller, 2016)

El poder del cuerpo

A diferencia de lo que ocurre con bailarines aficionados, los expertos activan más regiones sensoriales y motoras del cerebro cuando observan videos de cualquier tipo de baile. Y esta activación se incrementa cuando observan movimientos ya conocidos (Calvo-Merino et al., 2005). Estos resultados sugieren que disponemos de un sistema especular que nos permite vincular acciones ajenas con las propias y que podemos comprenderlas a través de una simulación motora. Todo ello tiene enormes implicaciones educativas. Por ejemplo, en una reciente investigación se comprobó que la comprensión de magnitudes físicas, como el momento angular (relacionada con los giros), se facilitaba con la activación de regiones sensoriales y motoras debido a la manipulación de ruedas de bicicletas, por ejemplo, y era menor cuando los estudiantes solo observaban la acción (Kontra et al., 2015).

En el fondo, todos estos estudios lo que sugieren es que el aprendizaje es un proceso activo. Lamentablemente, no se le da la importancia que merece al tiempo dedicado a la educación física o a los recreos y existe una tendencia a restringirlos para poder dedicar más tiempo a la enseñanza considerada como académica. El enfoque tradicional en el que los estudiantes pasan la mayor parte de su tiempo recibiendo información visual y auditiva en una situación pasiva, ni es la mejor forma para optimizar su aprendizaje, ni es lo que está en consonancia con lo que sabemos sobre el funcionamiento del cerebro. Sin tener conocimientos sobre neurociencia, John Dewey ya lo dijo hace mucho tiempo: “La enseñanza debe ser por la acción. La educación es la vida; la escuela es la sociedad”.

Jesús C. Guillén

.

Referencias:

  1. Cameron C. E. et al. (2012): “Fine motor skills and executive function both contribute to kindergarten achievement”. Child Development 83(4), 1229-1244.
  2. Damasio A. (2010). Y el cerebro creó al hombre: ¿Cómo pudo el cerebro generar emociones, sentimientos, ideas y el yo? Barcelona: Destino.
  3. Dehaene, Stanislas (2016). El cerebro matemático: Como nacen, viven y a veces mueren los números en nuestra mente. Buenos Aires: Siglo Veintiuno.
  4. Fredembach B. et al. (2009): “Learning of arbitrary association between visual and auditory novel stimuli in adults: the ‘bond effect’ of haptic exploration”. PLoS One 4(3): e4844.
  5. Glenberg A. M. (2011): “How reading comprehension is embodied and why that matters”. International Electronic Journal of Elementary Education 4(1), 5-18.
  6. Goldin-Meadow S. (2017): “Using our hands to change our minds”. WIREs Cognitive Science 8: e1368.
  7. Gracia-Bafalluy M., Noël M. P. (2008): “Does finger training increase young children’s numerical performance?” Cortex 44(4), 368-75.
  8. Kontra C. et al. (2015): “Physical experience enhances science learning”. Psychological Science 26(6), 737-749.
  9. Ma J. K., Le Mare L., Gurd B. J. (2015): “Four minutes of in-class high-intensity interval activity improves selective attention in 9- to 11-year olds”. Applied Physiology Nutrition and Metabolism 40, 238-244.
  10. Macedonia M., Mueller K. (2016): “Exploring the neural representation of novel words learned through enactment in a word recognition task”. Frontiers in Psychology 7:953.
  11. Nakamura K. et al. (2012): “Universal brain systems for recognizing word shapes and handwriting gestures during reading”. PNAS 109(50), 20762-20767.
  12. Vallée-Tourangeau F. et al. (2016 a): “Insight with hands and things”. Acta Psychologica 170, 195-205.
  13. Vallée-Tourangeau F. et al. (2016 b): “Interactivity mitigates the impact of working memory depletion on mental arithmetic performance”. Cognitive Research: Principles and Implications 1:26.
  14. Wagner M. J. et al. (2017): “Cerebellar granule cells encode the expectation of reward”. Nature, Mar 20: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature21726.html

 

 

El cerebro en la adolescencia: el secreto del éxito de nuestra especie

El cerebro del adolescente no es defectuoso, ni tampoco se corresponde con el de un adulto a medio formar. La evolución lo ha forjado para que opere de distinta forma que el de un niño o el de un adulto.

Jay N. Giedd

Cuenta la prestigiosa neurocientífica Sarah-Jayne Blakemore que un amigo suyo siempre conseguía que su hija de diez años dejara de hacer travesuras en el supermercado, junto a su hermana menor, prometiéndole que le cantaría una canción allí mismo. La estrategia siempre surtía efecto, las niñas dejaban de portarse mal y escuchaban su canción favorita. Sin embargo, cuando su hija mayor cumplió trece años, el padre observó que la única forma de conseguir que dejara de enredar con su hermana en las tiendas era amenazándola con cantar. Imaginar a su padre en público era suficiente para que se portaran bien. ¡Cuántos cambios en tan solo unos años y cuántas nuevas oportunidades!

Cambios en el cerebro adolescente

Los estudios con neuroimágenes de los últimos años han revelado que la adolescencia constituye un periodo en el que se produce una extraordinaria reorganización cerebral, tanto a nivel funcional como estructural, comparable a la que acontece en los tres primeros años de vida. Y es esta gran plasticidad cerebral la que hace que la adolescencia sea un periodo de grandes oportunidades, pero también de grandes riesgos. Así, por ejemplo, el adolescente puede progresar rápidamente en su desarrollo cognitivo, emocional y social, pero también es más vulnerable a conductas de riesgo o a trastornos psicológicos.

En términos generales, durante la adolescencia se dan dos grandes cambios en el cerebro, tanto en el de las chicas como en los chicos. El primero corresponde a un incremento de la sustancia blanca (axones recubiertos de mielina) y el segundo a un descenso gradual de la sustancia gris (estructuras no mielinizadas, como somas neuronales o dendritas).

En la corteza frontal, a diferencia de lo que ocurre en otras regiones cerebrales, las sinapsis continúan proliferando durante toda la infancia y se alcanza un máximo de la sustancia gris a los 11 años en las chicas y a los 12 años en los chicos, aproximadamente (Lenroot y Giedd, 2006; ver figura 1). En los años posteriores va disminuyendo de forma gradual y luego se mantiene bastante estable en la vida adulta. La eliminación selectiva de conexiones se debe a un proceso de poda que permite mantener sinapsis que se utilizan y desechar aquellas que no (a nivel cerebral se aplica aquello de “úsalo o tíralo”) para mejorar así la eficiencia neuronal. La última región en la que se aprecian este tipo de cambios es la corteza prefrontal, la sede de las llamadas funciones ejecutivas, aquellas que nos permiten tomar decisiones adecuadas y que, en definitiva, nos hacen humanos.

figura-1

Junto a esto, también se produce un incremento de la sustancia blanca en la corteza prefrontal durante la adolescencia. Este es el resultado de un proceso de mielinización que empieza en la infancia y se prolonga hasta la adultez con el que las neuronas, conforme van desarrollándose, crean una capa de una sustancia grasa blanca llamada mielina en torno a los axones que mejora la velocidad de transmisión de información entre las neuronas y conlleva un aumento de la conectividad entre las regiones cerebrales (Giedd et al., 2015). La rápida mielinización de las neuronas en la adolescencia permite coordinar una gran diversidad de tareas cognitivas en las que intervienen diversas regiones del cerebro, para así ir mejorando progresivamente su funcionamiento ejecutivo. Y conforme van mejorando la conectividad y la eficiencia neuronal, se va configurando el cerebro adulto.

Emoción vs control

Los cambios más importantes que se dan en el cerebro durante la adolescencia no están asociados al desarrollo de regiones cerebrales sino a un proceso de reorganización que mejora la comunicación entre las mismas. Estos cambios se dan, principalmente, en la corteza prefrontal y en el sistema límbico o emocional.

En la actualidad, se cree que lo más determinante para explicar la conducta típica del adolescente no es únicamente el desarrollo tardío de las funciones ejecutivas, asociado al lento proceso de maduración de la corteza prefrontal -que puede alargarse hasta pasada la veintena-, o los cambios drásticos que experimenta el sistema límbico durante la pubertad estimulado por las hormonas, sino el desfase temporal entre ambos procesos (Mills et al., 2014; ver figura 2). La mayor sensibilidad de regiones subcorticales durante la adolescencia promueve la aparición de conductas evolutivamente muy arraigadas que animan al joven a explorar nuevos ambientes, asumir riesgos o alejarse del entorno familiar para entablar relaciones entre iguales, por ejemplo. Pero la falta de desarrollo de la corteza prefrontal explicaría su mayor dificultad para controlarse, entender a los demás o percibir esos mensajes tan importantes en las interacciones sociales.

figura-2

Asimismo, las diferencias en el ritmo de maduración cerebral y en la producción hormonal podrían explicar, en parte, por qué la adolescencia afecta de forma diferente a las chicas y a los chicos. Por ejemplo, en las chicas maduran antes regiones de la corteza frontal, que intervienen en el procesamiento lingüístico o en la inhibición de impulsos, y el hipocampo, imprescindible en los procesos de memoria y aprendizaje. Mientras que en los chicos madura antes el lóbulo parietal inferior, fundamental para las tareas espaciales, o la amígdala (Lenroot y Giedd, 2010). Y en lo referente a las cuestiones hormonales, sabemos que en las chicas existe una gran sensibilidad a las relaciones sociales y la liberación de dopamina y oxitocina activada por los estrógenos explicaría la necesidad que tienen de compartir experiencias con sus amistades, mientras que en los chicos el aumento de los niveles de testosterona o de vasopresina justificaría la falta de interés social o la ansias por ser competitivos, respectivamente, que tantas veces percibimos en ellos.

El placer de la recompensa

El proceso de reorganización y maduración gradual que experimenta el cerebro en la adolescencia afecta a regiones que regulan la experiencia del placer (recompensa), la forma en la que vemos y pensamos sobre los demás (cognición social) y cómo nos controlamos (autorregulación).

Relacionado con la búsqueda de la novedad y las conductas de riesgo típicas en la adolescencia, se ha comprobado que en la pubertad, especialmente, existe un incremento en la densidad de receptores de dopamina (Silverman et al., 2015). Este neurotransmisor asociado a la curiosidad y a la búsqueda de lo novedoso interviene en el llamado sistema de recompensa cerebral, el que nos motiva y nos permite aprender. Los adolescentes resuelven los problemas de forma similar a los adultos y reconocen los riesgos igual que ellos, pero son más sensibles a las recompensas. O si se quiere, valoran el premio por encima de las posibles consecuencias negativas. Y en presencia de sus amigos, el efecto se amplifica.

Gardner y Steinberg (2005) utilizaron un videojuego en el que los participantes debían atravesar una ciudad con un coche lo más rápido posible porque cobraban en proporción al tiempo invertido. En muchas intersecciones del recorrido había semáforos que se ponían de forma aleatoria en ámbar y ello obligaba a tomar una rápida decisión. El jugador podía esperar y reanudar la marcha en verde o ahorrar tiempo atravesándolo en ámbar, aunque se exponía a un choque probable que le penalizaría con un intervalo de tiempo mayor. Pues bien, cuando los adolescentes hacen el recorrido solos asumen unos riesgos parecidos a los de los adultos. Sin embargo, en compañía de sus amigos -incluso cuando no se les deja comunicarse entre ellos- cambian su forma de conducir e incrementan mucho más sus riesgos (ver figura 3), algo que no ocurre en los adultos porque siguen conduciendo de la misma forma aunque tengan al lado sus amigos.

figura-3

Qué importante para el adolescente es sentirse aceptado por el grupo de iguales. La respuesta del cerebro a la exclusión del grupo es similar a la que se observa en situaciones de amenaza física o de depresión (Masten et al., 2009).

Desarrollo de la cognición social

El desarrollo de las competencias sociales que nos permiten interactuar y entender a otras personas también se ve afectado de forma especial en la etapa adolescente. Imaginemos que participamos en una tarea típica de laboratorio (Kilford et al., 2016) en la que hay una estantería con diversos objetos, algunos de los cuales no puede ver una persona que está situada detrás porque están tapados por un fondo gris oscuro (ver figura 4a; Director Condition). Esa persona nos pide mover algunos objetos pero, naturalmente, serán aquellos que él sí puede ver. Por ejemplo, nos puede decir “Mueve la pelota más grande”. Desde nuestra perspectiva, esa pelota es la de baloncesto, sin embargo, esa no la puede ver la otra persona, por lo que debemos ponernos en su situación y entender que se está refiriendo a la de fútbol. En el laboratorio se suministra este tipo de tareas a adolescentes y a adultos y también se realizan en una situación de control en la que no hay persona detrás (ver figura 4b; No Director Condition) y simplemente hay que aplicar la regla “ignorar los objetos con el fondo gris oscuro”.

figura-4

Aunque pueda parecer sorprendente, los adultos cometen un 50% de errores en la tarea en la que han de seguir las instrucciones de la otra persona y muchos menos cuando solo deben recordar la regla de ignorar el fondo gris. Como se puede observar en la figura 5, los errores van disminuyendo en las dos situaciones conforme se va incrementando el rango de edad de los participantes. Pero al comparar los dos últimos grupos, el de los adolescentes entre 14-17,7 años y el de los adultos, no hay casi variación en la condición ‘sin director’,  pero sí que existe una mejora significativa en la condición ‘con director’. Es decir, el adolescente emplea de la misma forma que el adulto las estrategias cognitivas básicas, pero le falta desarrollar la capacidad para interpretar las acciones ajenas, lo cual es imprescindible para navegar con rumbo en el océano de las relaciones sociales.figura-5

Un mayor conocimiento del cerebro adolescente posibilitará optimizar su desarrollo, pero también nos ayudará a diferenciar las conductas típicas de esta etapa y las enfermedades mentales. Porque, con la excepción del TDAH, los trastornos de aprendizaje o el autismo, por ejemplo, la gran mayoría de trastornos, como la depresión, la anorexia o la bulimia, el trastorno bipolar, los trastornos de ansiedad, la drogadicción o la esquizofrenia, se inician en el periodo comprendido entre los 10 y los 25 años de edad (Lee et al., 2014).

Importancia del contexto

La inclinación a tomar riesgos en la adolescencia ha demostrado tener un valor adaptativo porque, en muchas ocasiones, el éxito en la vida requiere afrontar situaciones menos seguras. Al igual que ocurre con la tendencia a relacionarse con iguales -los compañeros de la misma edad ofrecen más novedades que el entorno familiar ya conocido-, las conductas de riesgo entre los adolescentes se han observado en todas las culturas, aunque en grado diferente (Steinberg, 2014). Esto sugiere que, en lugar de intentar cambiar la naturaleza adolescente, deberíamos incidir en el contexto en el que estas inclinaciones naturales se dan. Por ejemplo, muchos programas educativos de prevención -como los de embarazos no deseados o de consumo de alcohol- asumen que los adolescentes pensarán en las consecuencias futuras de sus actos en estados de alto impacto emocional (no lo harán) o que asumen riesgos porque no están bien informados sobre esas consecuencias (no son conscientes de ello).

Otro enfoque diferente que no se limita a suministrar información sobre las actividades de riesgo y que está mucho más en consonancia con las necesidades cerebrales del adolescente es el de los programas que inciden en la mejora de la autorregulación. Y aunque la contribución de la escuela puede ser importante, la incidencia del entorno familiar es fundamental. Los hijos de padres que captan sus necesidades afectivas, fijan límites adecuados y fomentan una autonomía que les permite desarrollar todo su potencial tendrán una mayor probabilidad de mejorar su autorregulación y tener éxito en la vida (Luyckx et al., 2011).

También puede resultar muy beneficioso para los adolescentes, especialmente para aquellos que pertenecen a entornos socioeconómicos desfavorecidos, participar en actividades extraescolares bien estructuradas y supervisadas por los adultos, como en el caso de los deportes o del teatro. De hecho, las decisiones que toman los adolescentes en presencia de un adulto ligeramente mayor que ellos son mucho más prudentes que las que toman en presencia de sus compañeros y similares a lo que deciden cuando están solos (Silva et al., 2016; ver figura 6).

figura-6

El poder de la autorregulación

La capacidad de controlar nuestras acciones depende de la integridad del sistema de funcionamiento ejecutivo, una red extensa distribuida fundamentalmente en la corteza prefrontal. El lento desarrollo de esta región -la más moderna del cerebro, pero también la más vulnerable- hace que el desarrollo de la autorregulación sea el gran objetivo que deberíamos perseguir los educadores, especialmente en la adolescencia, y más ahora que constituye un periodo más amplio. Pero ello requiere ir más allá de la enseñanza de competenciales académicas que tienen una incidencia menor en el desarrollo de la persona y en su éxito en la vida. Sabemos, por ejemplo, que el estrés, la tristeza, la soledad o la fatiga pueden perjudicar el buen funcionamiento de la corteza prefrontal e interferir con el autocontrol a cualquier edad, pero la incidencia será mayor cuando su desarrollo es parcial, como en el caso de los adolescentes. Afortunadamente, disponemos de múltiples evidencias empíricas de distintos tipos de programas que pueden beneficiar el desarrollo de la necesaria autorregulación, imprescindible para el desarrollo académico y personal del joven. Según Steinberg (2014), las estrategias más útiles para el adolescente provienen del entrenamiento cognitivo, el ejercicio aeróbico, el mindfulness y los programas de educación emocional.

En lo referente al contexto escolar, los programas de ejercicio físico con adolescentes constituyen una estupenda forma de entrenamiento ejecutivo y son muy adecuados para combatir el estrés, mientras que los programas de educación socioemocional son imprescindibles en el desarrollo de competencias emocionales básicas, algunas de las cuales se refuerzan cuando se integra el mindfulness en las actividades. Y no olvidemos la importancia de la educación artística en el entrenamiento del autocontrol, como en el caso del teatro (ver video). Cuando el niño o el adolescente cante o actúe inhibirá los impulsos, no se distraerá y estará orgulloso de mostrar el resultado final a sus compañeros. Y eso ocurre porque encuentra motivadoras las actividades propuestas. Esa es la clave de la efectividad de las tareas lúdicas, deportivas o artísticas.

Del problema a la oportunidad

La gran plasticidad del cerebro durante la adolescencia convierte esta etapa en una oportunidad fantástica para el aprendizaje, el desarrollo de la creatividad y el crecimiento personal del estudiante. Tanto que algunos autores sugieren que la adolescencia podría representar un nuevo periodo sensible en el desarrollo cerebral, tras las ventanas plásticas tempranas asociadas al desarrollo sensorial, motor o del lenguaje (Furhmann et al., 2015).

Conocer las particularidades del desarrollo cerebral hará que no estigmaticemos las conductas típicas observadas y entendamos que el adolescente necesita nuestra guía, supervisión y comprensión. Como el cerebro adolescente es especialmente sensible a lo novedoso, sería interesante implicar a los alumnos en actividades que constituyan retos estimulantes que les permitan amplificar esas ansias que muestran por ser creativos. El adolescente busca nuevas expectativas y quiere investigar sobre su propia identidad por lo que nada mejor que animarle a adoptar formas de pensamiento abiertas, lo cual puede conseguirse a través de proyectos transdisciplinares como los APS (aprendizaje-servicio), una estupenda forma de vincular el aprendizaje a situaciones reales y de fomentar la cooperación o el análisis crítico, entre otras muchas competencias esenciales en los tiempos actuales. Porque los estudios longitudinales con adolescentes revelan que el mejor rendimiento académico y las relaciones más satisfactorias entre compañeros están asociadas a un trabajo cooperativo en el aula y no a uno individualista (Roseth et al., 2008). Por otra parte, cuando se les hace preguntas del tipo “¿Cómo se podría mejorar el mundo?” y se les pide que vinculen la respuesta a lo que están aprendiendo en la escuela, la reflexión sobre la contribución al bienestar ajeno impulsa su motivación hacia el aprendizaje y fomenta su autorregulación (Yeager et al., 2014). Y es que así somos los humanos, seres sociales con una capacidad de cambio, adaptación y aprendizaje única. Especialmente, en la adolescencia. Gracias a nuestro cerebro.

Jesús C. Guillén

.

Referencias:

  1. Fuhrmann D., Knoll L. J., Blakemore S. J. (2015): “Adolescence as a sensitive period of brain development”. Trends in Cognitive Sciences 19(10), 558-566.
  2. Gardner M., Steinberg L. (2005): “Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: an experimental study”. Developmental Psychology 41, 625-635.
  3. Giedd J. N. et al. (2015): “Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development”. Neuropsychopharmacology 40(1), 43-49.
  4. Giedd J. N. (2015): “The amazing teen brain”. Scientific American 312(6), 32-37.
  5. Kilford E. J., Garrett E., Blakemore S. J. (2016): “The development of social cognition in adolescence: An integrated perspective”. Neuroscience and Biobehavioral Reviews 70, 106-120.
  6. Lee F. S. et al. (2014): “Mental health. Adolescent mental health–opportunity and obligation”. Science 346(6209), 547-549.
  7. Lenroot R. K., Giedd J. N. (2006): “Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging”. Neuroscience and Biobehavioral Reviews 30, 718-729.
  8. Lenroot R K., Giedd J. N. (2010): ”Sex differences in the adolescent brain”. Brain and Cognition 72(1), 46-55.
  9. Luyckx K. et al. (2011): “Parenting and trajectories of children’s maladaptive behaviors: a 12-year prospective community study”. Journal of Clinical Child & Adolescent Psychology 40(3), 468-478.
  10. Masten C. L. et al. (2009): “Neural correlates of social exclusion during adolescence: nderstanding the distress of peer rejection”. Social Cognitive and Affective Neuroscience 4(2), 143-157.
  11. Mills K. L. et al. (2014): “The developmental mismatch in structural brain maturation during adolescence”. Developmental Neuroscience 36, 147-160.
  12. Roseth C., Johnson D. y Johnson R. (2008): “Promoting early adolescents’ achievement and peer relationships: the effects of cooperative, competitive, and individualistic goal structures”. Psychological Bulletin, 134(2), 223-246.
  13. Silva K., Chein J., Steinberg L. (2016): “Adolescents in peer groups make more prudent decisions when a slightly older adult is present”. Psychological Science 27(3), 322-330.
  14. Silverman M. H., Jedd K., Luciana M. (2015): “Neural networks involved in adolescent reward processing: an activation likelihood estimation meta-analysis of functional neuroimaging studies”. Neuroimage 122, 427-439.
  15. Steinberg L. (2014). Age of opportunity: Lessons from the new science of adolescence. Nueva York: Houghton Mifflin Harcourt.
  16. Yeager D. S. et al. (2014): “Boring but important: a self-transcendent purpose for learning fosters academic self-regulation”. Journal of Personality and Social Psychology 107(4), 559-580.

 

¿Cuáles son las asignaturas más importantes para el cerebro?

El excesivo interés por ciertas asignaturas y capacidades acarrea la marginación casi sistemática de otras competencias e intereses de los alumnos. Inevitablemente, muchos de ellos desconocen cuáles son sus auténticas capacidades y, en consecuencia, sus vidas pueden ser menos plenas.

Ken Robinson

Lo asumimos. Suena mal. El mundo jerarquizado de las asignaturas que hemos creado los adultos está alejado de las necesidades actuales. De hecho, una de las grandes diferencias entre las etapas educativas iniciales (Infantil y Primaria) y las etapas superiores (Secundaria y la Universidad) radica en que en las primeras se enseña a los niños, mientras que en las posteriores se enseña asignaturas. Pero sigue predominando en la mayoría de los sistemas educativos, en los que se han considerado prioritarias algunas de ellas y se han relegado a un papel secundario otras muchas. Sin embargo, desde la perspectiva integradora de la neuroeducación en la que consideramos como básico un aprendizaje directamente vinculado al mundo real, significativo, competencial e interdisciplinar, se plantea un enfoque diferente. Las matemáticas, las ciencias o la lengua no dejan de ser importantes -que lo son- pero comparten protagonismo con otras asignaturas (¿mejor disciplinas?) que no marginarán muchas competencias e intereses de los alumnos, y que facilitarán un mayor aprendizaje, más eficiente y, en definitiva, real. Porque nuestro cerebro necesita, y mucho, la educación socioemocional, la educación física, la educación artística y el juego. A continuación, compartimos con todos los seguidores de Escuela con Cerebro algunas evidencias empíricas que justifican la aplicación de este nuevo paradigma educativo.

Educación socioemocional

Las emociones sí importan

No podemos separar lo cognitivo de lo emocional. Cuando en el laboratorio se muestra a los participantes del experimento imágenes que corresponden a contextos emocionales diferentes, se activan regiones del cerebro concretas. Ante las fotografías que generan emociones positivas se activa el hipocampo y ello posibilita que los participantes puedan memorizar más palabras en ese contexto (Erk et al., 2003; ver figura 1). Esto sugiere la necesidad de generar en el aula climas emocionales positivos y seguros en los que se asume con naturalidad el error, en donde los alumnos cooperan y son protagonistas activos del aprendizaje o en los que las expectativas, tanto del profesor como del alumno, son siempre positivas. Este es el camino directo para facilitar el aprendizaje en el aula.

Figura 1

Junto a esto, los estudios longitudinales confirman los anteriores resultados. En un metaanálisis de varios años de duración en el que participaron más de 270.000 alumnos hasta la etapa preuniversitaria, se compararon 213 escuelas que utilizaban programas de aprendizaje socioemocional con otras que no los utilizaban. Respecto a los grupos de control, los participantes en los programas socioemocionales impartidos en primaria mostraron mejoras significativas en las habilidades sociales y emocionales, con actitudes más positivas y mayor compromiso escolar a los 18 años de edad. Y no sólo eso, sino que obtuvieron una mejora en el rendimiento académico del 11%, en promedio (Durlak et al., 2011; ver figura 2).

Figura 2

Desde la perspectiva neuroeducativa entendemos que la educación ha de ser integral, es decir, no puede limitarse a la adquisición de conocimientos o destrezas, sino que debe orientarse a formar personas. Y en eso consiste la educación emocional, en la adquisición de toda una serie de competencias emocionales que van a capacitar a la persona para la vida, fomentando su bienestar personal y social. Porque cambia y mejora nuestro cerebro. Pero para que el diseño, la implementación y la evaluación de estos programas de educación emocional sean eficientes se deben cumplir ciertas condiciones. Las más relevantes son las siguientes (Bisquerra et al., 2015):

  • Basar el programa en un marco conceptual sólido.
  • Especificar los objetivos del programa en términos evaluables.
  • Realizar esfuerzos coordinados que impliquen a toda la comunidad educativa.
  • Asegurar el apoyo del centro.
  • Impulsar una implantación sistemática a lo largo de varios años.
  • Emplear técnicas de enseñanza-aprendizaje activas y participativas que promuevan el aprendizaje cooperativo y sean variadas.
  • Incluir planes de formación y de asesoramiento del personal responsable del programa.
  • Incluir un plan de evaluación del programa antes, durante y después de su aplicación.

Consideramos especialmente importante que la implementación de estos programas se inicie en las primeras etapas educativas, las cuales tienen una incidencia específica en las funciones ejecutivas del cerebro (control inhibitorio, memoria de trabajo y flexibilidad cognitiva, las básicas). Pero para ello es necesario que el profesor conozca las estrategias adecuadas que permiten optimizar y desarrollar de forma apropiada estas importantes funciones ejecutivas. Y para fomentar un trabajo cooperativo eficiente en el aula es necesario enseñar a los alumnos diversas competencias emocionales básicas, lo cual resulta imposible si el docente no utiliza estas técnicas en su práctica diaria (no solo han de cooperar los alumnos). Porque el éxito de cualquier programa de educación emocional parte siempre de la formación del profesorado.

Cuando se añaden a este tipo de programas las prácticas contemplativas, como el mindfulness, se mejoran los resultados obtenidos en relación a cuando se utilizan estas técnicas por separado. Por ejemplo, cuando un niño está alterado, decirle que tome conciencia de sus propias emociones puede ser insuficiente; o la simple práctica del mindfulness no garantiza que adquiera las competencias necesarias para resolver conflictos. Sin embargo, cuando se integra el mindfulness en los programas de educación socioemocional, algunas de sus competencias se ven reforzadas: la autoconciencia adopta una nueva profundidad de exploración interior, la gestión emocional fortalece la capacidad para resolver conflictos y la empatía se convierte en la base del altruismo y la compasión (Lantieri y Zakrzewski, 2015). Y cuando se utilizan este tipo de estrategias, mejora la capacidad atencional (ver figura 3) y la gestión del estrés de los alumnos (Schonert-Reichl et al., 2015), lo cual incide positivamente sobre su rendimiento académico, pero también –y más importante- sobre su bienestar personal. Y eso no se restringe a una etapa educativa concreta.

Figura 3

Educación física

Bueno para el corazón, bueno para el cerebro

El ejercicio tiene una incidencia positiva en nuestra salud física, emocional, pero también cognitiva. Ya hace algunos años que se demostraron los beneficios de la actividad física sobre el cerebro de personas de edad avanzada. Y en los últimos tiempos, también se han realizado investigaciones que muestran su importancia sobre el cerebro de niños y adolescentes. Además de ser un estupendo recurso para combatir el tan temido estrés crónico o mejorar el bienestar, el ejercicio puede beneficiar el funcionamiento de las funciones ejecutivas que tienen una incidencia directa sobre el desarrollo académico y personal del alumnado. Y ello se debe a que durante el ejercicio se liberan toda una serie de moléculas (BDNF o IGF-1, por ejemplo) que intervienen en procesos neuronales básicos, como la plasticidad sináptica, la neurogénesis o la vascularización cerebral (Gómez-Pinilla y Hillman, 2013), junto al incremento del nivel de neurotransmisores imprescindibles para un buen aprendizaje, como la dopamina (motivación), serotonina (estado de ánimo) o noradrenalina (atención), por ejemplo.

Los niños o adolescentes que practican deporte y poseen una mejor capacidad cardiovascular, tienen un hipocampo mayor y, como consecuencia de ello, se desenvuelven mejor en tareas que requieren la memoria explícita (Chaddock et al., 2010; ver figura 4).

Figura 4

Y aquellos alumnos que realizan pruebas académicas relacionadas con la comprensión lectora, la ortografía o la aritmética tras una actividad aeróbica moderada de 20 minutos (caminando o corriendo en la cinta, por ejemplo), obtienen mejores resultados que aquellos que han estado en una situación pasiva en ese intervalo de tiempo (Hillman et al., 2009). Incluso, simples parones de 4 minutos en la actividad académica diaria de niños en educación primaria para realizar una serie de movimientos rápidos son suficientes para optimizar la atención necesaria que requiere la tarea posterior y mejorar el desempeño en la misma (Ma et al., 2015; ver figura 5). Esto será muy útil para todos los alumnos, en general, pero especialmente para aquellos con TDAH, que tienen mayores dificultades para focalizar la atención durante periodos de tiempo prolongados. Los síntomas que caracterizan a estos niños con TDAH parecen reducirse cuando pueden moverse y jugar en entornos naturales. Y también se ha comprobado la utilidad de combinar el ejercicio físico con una mayor actividad mental como se da, por ejemplo, en el caso de las artes marciales. Un programa de taekwondo de tres meses de duración mejoró los procesos de autorregulación que posibilitaron mejoras, tanto conductuales como académicas, en los niños que participaron en los mismos (Lakes y Hoyt, 2004).

Figura 5

Las implicaciones educativas de estas investigaciones sugieren la necesidad de dedicar más tiempo a la educación física y no de relegarla a las últimas horas de la jornada escolar, como suele hacerse tradicionalmente. Esto en la práctica se ha comprobado, por ejemplo, con el programa Zero Hour de las escuelas Naperville 203 en Illinois, el cual ha permitido mejorar el bienestar personal de los alumnos y su rendimiento académico general (Ratey y Hagerman, 2010). Y cuando se han aplicado programas de ejercicio físico antes del inicio de la jornada escolar en los que los niños caminan o corren durante 15-20 minutos, mejora su comportamiento, su concentración durante las tareas y su disposición para el aprendizaje en las horas posteriores (Stylianou et al., 2016). Las últimas recomendaciones sobre el tiempo adecuado para optimizar la salud y el rendimiento académico de los alumnos son las siguientes: 150 minutos semanales en primaria y 225, como mínimo, en secundaria (Castelli et al., 2015).

Junto al necesario protagonismo de la educación física, también resulta fundamental enseñar al alumnado la importancia que tienen el sueño y la alimentación sobre el aprendizaje, tanto a corto como a largo plazo.

Educación artística

El arte: una necesidad cerebral

Los niños descubren de forma natural el mundo que les rodea cantando, dibujando, bailando o recreando, todas ellas actividades vinculadas al arte. Y ello es necesario para un adecuado desarrollo sensorial, motor, cognitivo y emocional. Las investigaciones muestran que las diferentes variedades artísticas pueden incidir de forma positiva en el aprendizaje del alumnado. Así, por ejemplo, existen diversas evidencias empíricas que demuestran que la música (ver figura 6) mejora el rendimiento académico o la lectura, el teatro fortalece las habilidades verbales y las artes visuales pueden beneficiar el razonamiento geométrico (Winner et al., 2014). Pero por encima de estas particularidades, la educación artística resulta necesaria porque nos permite adquirir toda una serie de hábitos mentales y competencias básicas en los tiempos actuales -como la creatividad, cooperación, pensamiento crítico, resolución de problemas o iniciativa- que están en consonancia con la naturaleza social del ser humano y que son imprescindibles para el aprendizaje de cualquier contenido curricular. Porque al experimentar el arte creado por otros vemos y sentimos el mundo como ellos. ¡Dichosas neuronas espejo!

Figura 6

Sousa y Pilecki (2013) han identificado algunas de las razones por las que las artes constituyen une necesidad para los estudiantes de cualquier etapa educativa: activan el cerebro, hacen la enseñanza más interesante, reducen el estrés, introducen novedad, fomentan la cooperación, promueven la creatividad, mejoran la memoria a largo plazo y favorecen el desarrollo intelectual. Y existen diversos estudios que confirman esto. Por ejemplo, cuando se diseña una unidad didáctica de ciencias en la que los alumnos realizan actividades que incluyen actuaciones teatrales, dibujos de posters, recreación de movimientos o utilización de la música, en consonancia con los objetivos de aprendizaje identificados, mejoran la memoria a largo plazo frente a aquellos que siguen un enfoque tradicional (Hardiman et al., 2014). Una muestra clara de la necesidad de asumir un enfoque educativo interdisciplinar en el que las diferentes disciplinas se solapan de forma natural y no son independientes. Porque enseñar poesía de Lope de Vega a ritmo de rap, convertir la clase de biología en una galería de arte (ver figura 7) o pedir a los alumnos de matemáticas que escriban unas estrofas donde relatan los pasos que deben seguir para aplicar un teorema, puede motivar y facilitar el aprendizaje. No podemos pedir a nuestros alumnos que sean creativos si nosotros no hacemos el esfuerzo por serlo. Y más sabiendo que la creatividad no es innata y puede mejorarse con el entrenamiento adecuado.

Figura 7

Los programas de educación artística pueden resultar especialmente beneficiosos para adolescentes que pertenecen a entornos socioeconómicos desfavorecidos. En un estudio de tres años se permitió elegir a los alumnos entre diferentes formas artísticas como la música, la pintura, la grabación de videos, la escritura de guiones o el diseño de máscaras. Luego profundizaban más en sus elecciones a través de la cooperación y, finalmente, realizaban una recreación teatral o grababan en video su trabajo realizado. Los tres años de aplicación del programa revelaron que los estudiantes mejoraron sus habilidades artísticas y sociales, redujeron sus problemas emocionales y, en general, desarrollaron más que el grupo de control diversas competencias interpersonales como la comunicación, la cooperación o la resolución de conflictos (Wright et al., 2006).

En la práctica, los alumnos desarrollan un pensamiento más profundo y creativo cuando se integran las artes en los contenidos curriculares. Un ejemplo de ello lo representa el programa Artful Thinking desarrollado por el Project Zero de la Universidad de Harvard que utiliza el poder de las imágenes visuales para desarrollar la creatividad y facilitar el aprendizaje. A través de la metáfora de la paleta de un pintor se estimula en los alumnos procesos como el cuestionamiento, la observación, el razonamiento, la indagación o la comparación (ver figura 8).

Figura 8

Existen también centros como las escuelas A+, en Carolina del Norte, que se han comprometido a enseñar arte todos los días a través de un plan de estudios consensuado que favorece múltiples formas de aprendizaje más cercano a la realidad y en el que interviene toda la comunidad educativa. Los resultados muestran un incremento de satisfacción entre el alumnado y el profesorado y una mejora del rendimiento académico de los estudiantes. Algo que está en consonancia con el famoso estudio longitudinal dirigido por James Catterall (2009) que duró 12 años y en el que intervinieron 12000 alumnos de las etapas preuniversitarias. Los resultados indicaron que la educación artística tiene una incidencia positiva en el rendimiento académico del alumnado y en el desarrollo de conductas prosociales.

Juego

Juego, me divierto y aprendo

El juego constituye un mecanismo natural arraigado genéticamente que suscita la curiosidad, es placentero y nos permite adquirir toda una serie de competencias básicas para la vida que están en plena consonancia con nuestra naturaleza social. Y, por ello, es necesario para el aprendizaje y constituye un recurso que debe utilizarse a cualquier edad y en cualquier etapa educativa. En experimentos con ratas -poseen una genética parecida a la nuestra- se ha comprobado que se altera el desarrollo normal del cerebro de las crías cuando se les impide jugar, manifestando en el futuro déficits de comportamiento social y conductas agresivas ante estímulos novedosos. Aunque algunos de los experimentos realizados con ratas, obviamente, no pueden ser replicados en seres humanos, existen indicios que mostrarían que los niños a los que se les impide jugar con normalidad tendrían mayor probabilidad de desarrollar en el futuro problemas de personalidad, impulsividad o una menor capacidad metacognitiva (Iliceto et al., 2015).

El juego es imprescindible para el aprendizaje debido, básicamente, al reto asociado al mismo que nos motiva y al feedback suministrado que nos va aportando información continua sobre cómo vamos progresando. Cuando en el laboratorio se han analizado los cerebros de personas jugando, se ha comprobado que se activa el llamado sistema de recompensa cerebral asociado a la dopamina que despierta nuestra motivación intrínseca y que, en definitiva, nos permite aprender. Pero también, durante el feedback suministrado, se desactiva la red neuronal por defecto y así se facilita que el jugador pueda enfocar la atención hacia los estímulos externos (Howard-Jones et al., 2016; ver figura 9).

Figura 9

A raíz de todo lo anterior, se antoja necesario integrar el componente lúdico en el aula. Pero mantener el interés de los alumnos por el juego durante un trimestre o un curso escolar completo constituye un reto mucho mayor que incorporar una actividad lúdica un día aislado. En este caso concreto, hablamos ya de gamificación, la cual convierte la clase en una experiencia de juego, y no consiste en enmascarar con puntos, rankings o avatares lo que siempre hemos hecho. Porque para implementar un diseño educativo gamificado real hemos de identificar los objetivos de aprendizaje (¿por qué queremos gamificar esa experiencia?), crear la narrativa o historia (ver figura 10) que guiará el proceso (¿cómo participarán los alumnos en la experiencia?, ¿cómo se desarrollará la historia?, etc.) y cómo se integrarán las dinámicas (¿cómo trabajarán los alumnos?, ¿qué tipos de actividades les pediremos?, etc.) y las mecánicas propias del juego (puntos, avatares, rankings, insignias, niveles, etc.) que harán progresar la acción y motivarán e involucrarán al alumno en la historia.

Figura 10

Y en este proceso, las tecnologías digitales constituyen un recurso que puede facilitar enormemente el aprendizaje. La utilización de animaciones (ver figura 11), líneas del tiempo, infografías, murales digitales, screencasts, realidad aumentada, videojuegos… constituye en el fondo una actualización de las prácticas pedagógicas convencionales que puede ser aprovechada para atender la diversidad en el aula.

Figura 11

De hecho, en muchas investigaciones en neurociencia se han utilizado programas y aplicaciones informáticas basadas en el juego con la finalidad de mejorar determinados trastornos del aprendizaje o funciones mentales y, en muchos casos, se han llegado a comercializar. Graphogame (dislexia), Number Race (discalculia) o NeuroRacer (memoria de trabajo) son algunos ejemplos conocidos.

Cuando se utilizan este tipo de estrategias en el aula, resulta natural integrar en las mismas metodologías inductivas en las que el profesor propone retos y preguntas que suscitan la curiosidad del alumno, fomentan su autonomía, favorecen el trabajo cooperativo y proporcionan experiencias de aprendizaje vinculadas al mundo real que permiten una mayor interdisciplinariedad. Algunos ejemplos conocidos son el aprendizaje basado en problemas o proyectos, la enseñanza por medio del estudio y discusión de casos o el aprendizaje por indagación. Y otro buen ejemplo que integra también con naturalidad esta forma de trabajar es el modelo Flipped Clasroom en el que se invierte el proceso tradicional en el aula. En casa, el alumno ve videos cortos, a su propio ritmo, relacionados con los contenidos que se están trabajando y esta información puede consultarla cuando lo desee (ver figura 12). Mientras que el tiempo en el aula se aprovecha para realizar tareas de aprendizaje activo que fomenten la reflexión y la adquisición de hábitos intelectuales como, por ejemplo, resolución de problemas, proyectos cooperativos o prácticas de laboratorio, con lo que el profesor puede ser más sensible a las necesidades particulares y disponer de más tiempo para ello.

Figura 12

Está claro que los nuevos tiempos requieren nuevas necesidades educativas. Nuestro cerebro plástico y social -en continua reorganización- agradece este tipo de retos y así sigue mejorando su funcionamiento y el de los demás.

Jesús C. Guillén

.

Referencias:

  1. Bisquerra R., Pérez González J. C. y García E. (2015). Inteligencia emocional en educación. Madrid: Síntesis.
  2. Blood A. J. & Zatorre R. (2001): “Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion”. PNAS 98 (20), 11818-11823.
  3. Castelli, D. M. et al. (2015): “Active education: growing evidence on physical activity and academic performance”. Active Living Research.
  4. Catterall J. S. (2009). Doing well and doing good by doing art: the effects of education in the visual and performing arts on the achievements and values of young. Los Angeles/London: Imagination Group/IGroup Books.
  5. Chaddock L. et al. (2010): “A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children”. Brain Research 1358, 172-183.
  6. Durlak, J.A. et al. (2011): “The impact of enhancing students’ social and emotional learning: a meta-analysis of school-based universal interventions”. Child Development 82, 405-432.
  7. Erk, S. et al. (2003): “Emotional context modulates subsequent memory effect”. Neuroimage, 18, 439-447.
  8. Gómez-Pinilla F. and Hillman C. (2013): “The influence of exercise on cognitive abilities”. Comprehensive Physiology 3, 403-428.
  9. Hardiman M. et al. (2014): “The effects of arts integration on long-term retention of academic content”. Mind, Brain and Education, 8(3), 144-148.
  10. Hillman C.et al. (2009): “The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children”. Neuroscience 159, 1044-1054.
  11. Howard-Jones P. A., Jay T., Mason A., Jones H. (2016): “Gamification of learning deactivates the default mode network”. Frontiers in Psychology 6 (1891).
  12. Iliceto P. et al. (2015): “Brain emotion systems, personality, hopelessness, self/other perception, and gambling cognition: a structural equation model”. Journal of Gambling Studies, April 18, 1-13.
  13. Lakes K. D., Hoyt W. T. (2004): “Promoting self-regulation through school-based martial arts training”. Applied Developmental Psychology 25, 283–302.
  14. Lantieri L. y Zakrzewski V. (2015): “How SEL and Mindfulness Can Work Together”:

http://greatergood.berkeley.edu/article/item/how_social_emotional_learning_and_mindfulness_can_work_together

  1. Ma J. K., Le Mare L., Gurd B. J. (2015): “Four minutes of in-class high-intensity interval activity improves selective attention in 9- to 11-year olds”. Applied Physiology Nutrition and Metabolism 40, 238-244.
  2. Ratey, John J. y Hagerman, Eric (2010). Spark! How exercise will improve the performance of your brain. London: Quercus.
  3. Robinson, Ken y Aronica, Lou (2015). Escuelas creativas. La Revolución que está transformando la educación. Barcelona: Grijalbo.
  4. Schonert-Reichl K. A. et al. (2015): “Enhancing cognitive and social-emotional development through a simple-to-administer mindfulness-based school program for elementary school children: a randomized controlled trial”. Developmental Psychology 51(1), 52-66.
  5. Sousa, David A. (Anthony), Pilecki, Thomas J. (2013). From STEM to STEAM: Using Brain-Compatible Strategies to Integrate the Arts. Thousand Oaks: Corwin.
  6. Stylianou M. et al. (2016): “Before-school running/walking club: effects on student on-task behavior”. Preventive Medicine Reports 3, 196-202.
  7. Winner, E., T. Goldstein y S. Vincent-Lancrin (2014). ¿El arte por el arte? La influencia de la educación artística. OECD Publishing.
  8. Wright R. (2006): “Effect of a structured performing arts program on the psychosocial functioning of low-income youth: findings from a Canadian longitudinal study”. Journal of Early Adolescence, 26.

Alimentos para una buena salud cerebral: implicaciones educativas

Los beneficios de una buena alimentación se traducen en un gran rendimiento del cerebro, el cual tendría muchas dificultades para realizar sus funciones si desde un principio no recibe los nutrientes necesarios que aporta una dieta equilibrada.

Tomás Ortiz

Sabemos que nuestro cerebro, en promedio, constituye únicamente el 2% del peso corporal. Sin embargo, sus necesidades energéticas son muy altas: como mínimo representan el 20% del consumo energético corporal (Magistretti y Allaman, 2015). Pero no todas las calorías tienen la misma incidencia positiva sobre nuestras capacidades cognitivas y estados anímicos. Si en anteriores artículos explicábamos la importancia del ejercicio físico y del sueño sobre el aprendizaje, en el presente artículo queremos analizar los beneficios de los hábitos nutricionales adecuados para una buena salud cerebral y su incidencia sobre el rendimiento académico del alumnado. Porque, efectivamente, nuestro cerebro es el resultado de lo que comemos. Aunque también es muy importante cuando lo comemos.

Somos lo que comemos

La buena alimentación y un estilo de vida sano inciden de forma positiva sobre el cerebro afectando a toda una serie de procesos moleculares y celulares asociados al metabolismo energético y a la plasticidad sináptica y que son fundamentales para la transmisión y procesamiento de la información en el cerebro (Gómez-Pinilla y Tyagi, 2013; ver figura 1). Y ello tiene una incidencia directa, por ejemplo, en el aprendizaje o en el retraso de enfermedades neurodegenerativas como el Alzheimer.

Figura 1

A ello puede contribuir una dieta variada en la que estén presentes algunos nutrientes concretos, como en el caso de la dieta mediterránea caracterizada por un alto consumo de verduras, frutas, cereales, pescados o grasas insaturadas como el aceite de oliva. Por ejemplo, los ácidos grasos omega 3, en especial el DHA que está presente en el pescado azul (ver figura 2), son muy importantes para el buen funcionamiento neuronal porque forman parte de sus membranas. Estos omega 3 pueden regular la molécula BDNF -que generamos también con el ejercicio físico y que está asociada a la plasticidad sináptica, la neurogénesis o la vascularización cerebral- a través incluso de cambios epigenéticos que modifican la expresión génica (Dauncey, 2015) y son esenciales para una buena transmisión de información entre neuronas. De hecho, se han encontrado niveles más bajos del importante ácido DHA en niños con peor rendimiento académico (Montgomery et al., 2013). O los polifenoles, que podemos encontrar en las frutos rojos, el vino tinto o el chocolate negro, mejoran aspectos de las funciones sinápticas debido a su efecto antioxidante (Meeusen, 2014).

La nutrición es muy importante en los primeros años de vida, especialmente los alimentos ricos en proteínas (por ejemplo, pescado, carnes magras o productos lácteos con poca grasa) porque intervienen en el desarrollo neuronal. Por ejemplo, una dieta de mayor calidad durante los tres primeros años tiene un efecto positivo en la capacidad verbal y no verbal de los niños a los 10 años de edad. Por el contrario, una mala nutrición durante el primer año de vida está asociada a un mayor deterioro cognitivo en la adultez (Waber et al., 2014). De hecho, esta nutrición inadecuada podría explicar el menor desarrollo de la corteza cerebral que se ha encontrado en niños que han crecido en entornos de pobreza (Noble et al., 2015).

Figura 2

El poder del desayuno

Cuando nos levantamos, tras varias horas de ayuno, los depósitos de glucógeno -forma de almacenarse los hidratos de carbono en el hígado y los músculos- han disminuido bastante. Sabemos que nuestro cerebro requiere un alto consumo de energía que nos la aportarán los alimentos con hidratos de carbono. Pero su buen funcionamiento no se limita a los recursos energéticos principales y esa es la razón por la que necesita, como a veremos a continuación, una cantidad adecuada de proteínas y grasas buenas, como los omega 3 que comentábamos en el apartado anterior. Y ello puede repercutir en el rendimiento académico del alumnado.

Cuando hace un tiempo analizamos los hábitos de sueño de 21 adolescentes (leer), comprobamos que un alto porcentaje de los mismos (81%) se encontraba cansado en muchas ocasiones (ver figura 3). Esto podía justificarse porque la gran mayoría de ellos no dormía las horas adecuadas (las necesidades de sueño en los adolescentes sabemos que son mayores). Pero indagando un poco más comprobamos que muchos de ellos no seguían hábitos nutricionales adecuados y, en concreto, no desayunaban, algo que está muy generalizado entre los adolescentes (Adolphus et al., 2015) y que puede contribuir tanto a la fatiga física como a la mental.

Figura 3

Cuando se ha analizado el rendimiento académico de niños y adolescentes que desayunan frente a los que no lo hacen, se ha comprobado, en especial para aquellos menores de 13 años, que los que desayunan se desenvuelven mejor en tareas escolares que requieren atención y memoria y en la resolución de problemas, obteniendo mejores resultados en pruebas matemáticas (Adolphus et al., 2013). Estos efectos positivos son menos claros en lo referente a la incidencia sobre cuestiones conductuales.

En la práctica, una de las medidas que se podrían aplicar son programas de desayunos escolares, los cuales se han probado con mucho éxito en varios países. Pero resulta fundamental compartir los conocimientos y experiencias relacionadas con los hábitos nutricionales con los propios alumnos. Aunque no existe consenso sobre cuál sería el tipo de desayuno más beneficioso, sí que conocemos ciertas pautas generales que pueden beneficiar esa comida y el resto que se realicen durante el día. Así, por ejemplo, sabemos que las necesidades energéticas del cerebro durante el día requieren la mayor cantidad de hidratos de carbono en la primera comida o que el buen funcionamiento del hipocampo y de las regiones que intervienen en las funciones ejecutivas necesita una cierta cantidad de proteínas matinal (Hasz y Lamport, 2012). Respecto a esto último, el cerebro utiliza el aminoácido tirosina, que se encuentra en alimentos ricos en proteínas como los lácteos, huevos, carnes o pescado, para sintetizar neurotransmisores como la noradrenalina o la dopamina que son fundamentales en los procesos de atención y aprendizaje (Jensen, 2008). Ello sugiere la importancia de no restringir los desayunos a alimentos con hidratos de carbono presentes en el pan o los cereales, por ejemplo.

Ya lo dice el sabio refranero: “Desayuna como un rey, come como un príncipe y cena como un mendigo”. Aunque…

Más comidas

Está claro que el desayuno puede afectar al rendimiento académico de los niños y los adolescentes. Pero otra cuestión diferente que no suele considerarse es la importancia de mantener los niveles de azúcar en sangre estables para evitar esos bajones energéticos que todos conocemos. Y para ello, no es lo más adecuado restringirse únicamente a las tres comidas tradicionales. Para combatir la fatiga es muy útil realizar varias pequeñas comidas al día para mantener estables los niveles de azúcar (glucosa) y evitar así los picos de insulina que producen aletargamiento, como tras una comida copiosa en la que predominan los hidratos de carbono con un alto índice glucémico que pueden ser útiles solo cuando existe una necesidad energética grande inmediata, como la que se da después de una sesión intensa de ejercicio físico o en el desayuno tras muchas horas de ayuno. Si los niños tienen bajos niveles de glucosa durante las tareas académicas, puede verse perjudicado el aprendizaje y el rendimiento cognitivo (Ortiz, 2009) y la correspondiente pérdida de concentración puede originarse por el excesivo tiempo transcurrido entre las comidas correspondientes. Los niveles adecuados de glucemia se pueden facilitar en el transcurso de la jornada escolar si los alumnos comen un tentempié en forma de bocadillo, fruta o yogur, a parte del desayuno, por supuesto. Una comida rica en proteínas y vitaminas garantizará un buen rendimiento intelectual por la tarde y la merienda debería aportar más hidratos de carbono que la cena porque las necesidades energéticas tras la última comida del día son mucho menores. En la cena habría que evitar los alimentos y bebidas estimulantes que perjudicarán el sueño reparador que es tan importante para el aprendizaje.

Figura 4

¿Y el agua?

Sabemos que una buena hidratación es necesaria para la salud y el bienestar personal. Pero, ¿está justificada la gran fascinación que muestran por la ingesta de agua ciertos programas educativos?

Lo que se sabe es que la deshidratación, incluso en pequeñas proporciones, puede perjudicar capacidades cognitivas asociadas a la memoria a corto plazo o la percepción visual, y el estado de ánimo, especialmente en niños y en personas de edad avanzada (Masento et al., 2014). Y no podemos ignorar las condiciones ambientales en las que el alumno se encuentra porque el ejercicio físico o las altas temperaturas pueden aumentar las necesidades hídricas. En estos contextos especiales, el sistema de vigilancia desarrollado por nuestro cerebro que nos hace sentir sed, y que hace que olvidarnos de beber agua no sea un problema, es menos fiable. Sin embargo, una cuestión diferente es que necesitemos beber ocho vasos de agua al día porque si no el tamaño de nuestro cerebro disminuirá o que los niños en situaciones normales sean proclives a la deshidratación voluntaria. Como bien plantea el neurocientífico Paul Howard-Jones (2011, p. 70): “animar a los niños a que beban agua y permitir que lo hagan cuando tengan sed es un enfoque más prudente que vigilar constantemente la cantidad de agua que consumen”. No obstante, en un estudio muy reciente en el que han intervenido importantes investigadores de la Universidad de Illinois se ha encontrado una asociación entre el consumo de agua en niños de 8 y 9 años de edad y el desempeño en una tarea de inhibición, es decir, un mayor consumo de agua permitiría a los niños un mejor rendimiento en tareas que requieren un buen uso de las funciones ejecutivas del cerebro (Khan et al., 2015). Como siempre pasa en ciencia, esperamos nuevas investigaciones.

Conclusiones finales

Los profesores deberíamos ser conscientes de lo importante que es para nuestro cerebro la adquisición de buenos hábitos nutricionales. Es por ello que hay que enseñar a los alumnos y también a las familias la incidencia de la buena alimentación sobre el rendimiento académico y, a más largo plazo, sobre la salud general. Porque cuando nos mantenemos activos realizando deporte y lo acompañamos de una dieta equilibrada -como la mediterránea, rica en pescado, verduras, frutas, cereales o frutos secos- evitando demasiados azúcares procesados o grasas malas que nuestro organismo no asimila de forma adecuada, mejoran nuestras capacidades físicas e intelectuales. Debido a la continua interacción entre el cuerpo y el cerebro que resulta imprescindible para el aprendizaje y que nos caracteriza a los seres humanos, si le damos al cuerpo lo que necesita, habrá una mayor probabilidad de que el cerebro aprenda de forma más eficiente.

En el fondo, todo se reduce a: lo que es bueno para el corazón, es bueno para el cerebro.

Jesús C. Guillén

 

Referencias:

  1. Adolphus, K., Lawton, C.L., Dye, L. (2013): “The effects of breakfast on behavior and academic performance in children and adolescents”. Frontiers in Human Neuroscience 7 (425).
  2. Adolphus, K., Lawton, C.L., Dye, L. (2015): “The relationship between habitual breakfast consumption frequency and academic performance in British adolescents”. Frontiers in Public Health 3(68).
  3. Dauncey M. J. (2015): “Nutrition, genes, and neuroscience: implications for development, health, and disease”. En Diet and exercise in cognitive function and neurological diseases, New Jersey, John Wiley & Sons.
  4. Gomez-Pinilla F. (2008): “Brain foods: the effects of nutrients on brain function”. Nature Reviews Neuroscience 9, 568-578.
  5. Gómez-Pinilla F., Tyagi E. (2013): “Diet and cognition: interplay between cell metabolism and neuronal plasticity”. Current Opinion in Clinical Nutrition and Metabolic Care 16(6), 726-733.
  6. Hasz, L.A. y Lamport, M.A. (2012): “Breakfast and adolescent academic performance: an analytical review of recent research”. European Journal of Business and Social Sciences 1, 61–79.
  7. Howard Jones P. (2011). Investigación neuroeducativa. Neurociencia, educación y cerebro: de los contextos a la práctica. Madrid, La Muralla.
  8. Jensen, Eric (2008). Brain- based learning: the new paradigm of teaching. London: Corwin.
  9. Khan N. A. (2015): “The relationship between total water intake and cognitive control among prepubertal children”. Annals of Nutrition & Metabolism 66(3), 38-41.
  10. Magistretti P. J., Allaman I. (2015): “A cellular perspective on brain energy metabolism and functional imaging”. Neuron 86(4), 883-901.
  11. Masento N. A. (2014): “Effects of hydration status on cognitive performance and mood”. British Journal of Nutrition 111(10), 1841-1852.
  12. Meeusen R. (2014): “Exercise, nutrition and the brain”. Sports Medicine 44(1), 47-56.
  13. Montgomery P. et al. (2013): “Low blood long chain omega-3 fatty acids in UK children are associated with poor cognitive performance and behavior: a cross-sectional analysis from the DOLAB study”. PLoS One 8(6).
  14. Noble K. G. et al. (2015): “Family income, parental education and brain structure in children and adolescents”. Nature Neuroscience 18(5), 773-778.
  15. Ortiz, Tomás (2009). Neurociencia y educación. Madrid: Alianza Editorial.
  16. Waber, D.P et al. (2014): “Impaired IQ and academic skills in adults who experienced moderate to severe infantile malnutrition: A 40‐year study”. Nutritional Neuroscience 17, 58–64.