Archivo

Posts Tagged ‘Matemáticas’

Escuela con Cerebro participa en las I Jornadas de Neurociencia y Aprendizaje en el CEFIRE-Vinaròs

El Servicio de Formación del Profesorado de la Comunidad Valenciana, a través del Centro de Formación, Innovación y Recursos Educativos (CEFIRE) de Vinaròs, ha organizado las I Jornadas de Neurociencia y Aprendizaje los próximos días 12, 13 y 14 de marzo. Es una iniciativa que hay que celebrar porque representa una nueva oportunidad para dar a conocer cómo la neurociencia informa la pedagogía, contribuyendo de este modo al progreso de la educación. Y en nuestro caso es motivo de una especial alegría porque hemos sido invitados por el director del CEFIRE-Vinaròs, Josep Pla Ferrer, a instancias de la responsable de la Asesoría de tutoría y transversalidad de dicho centro, Carmen Franch, a impartir una conferencia-taller sobre Neurociencia y Matemáticas en una clase de bachillerato.

Cartell Jornades Neurociència i Aprenentatge-1

El hecho que el último día se concentre la exposición de las aplicaciones didácticas en el aula desde la neurociencia y dispongamos tan sólo de una hora para nuestra intervención nos ha llevado a priorizar aquellos aspectos que puedan tener un mayor interés para los profesores asistentes. Así, dedicaremos unos 15 minutos a apuntar (por parte de Félix Pardo) el error de Piaget en torno al sentido numérico innato del niño, tal como han puesto de manifiesto diversas investigaciones en neurociencia cognitiva, apoyadas por recientes evidencias empíricas en el campo de la Teoría de la mente, para proponer un cambio de paradigma en el diseño curricular de la materia de matemáticas.

A continuación dedicaremos unos 45 minutos a exponer (por parte de Jesús C. Guillén) cómo se debe impartir una clase de matemáticas a alumnos de bachillerato desde los resultados actuales de la neurodidáctica, un nuevo enfoque en la educación que a nuestro entender integra la neurocinciencia cognitiva, la psicología cognitiva y la pedagogía crítica. Esta exposición se estructurará en tres partes: 1) la primera, en la que se contextualiza la exposición en relación a los principios pedagógicos confirmados empíricamente por la neurociencia que podemos aplicar a la didáctica de las matemáticas; 2) la segunda, en la que se comentan algunas investigaciones relevantes sobre el “cerebro matemático”, y 3) la tercera (la más extensa), en la que se explican y proponen aplicaciones prácticas referidas a las matemáticas para alumnos de bachillerato pero que, algunas de ellas, pueden ser de utilidad general. Estas aplicaciones prácticas están relacionadas con tres factores críticos para el aprendizaje: la motivación, la memoria y la atención (todo referido al contexto particular de las matemáticas). Así mismo, se considerarán algunos programas o estrategias de educación compensatoria ante trastornos de aprendizaje como la discalculia y que han sido probados con éxito. Cabe advertir que como hemos supuesto que entre los asistentes habrá docentes de diferentes especialidades, no utilizaremos un lenguaje muy técnico para facilitar de este modo la comprensión de la exposición.

Jesús C. Guillén y Félix Pardo

Más información en estos enlaces:

http://cefire.edu.gva.es/sfp/index.php?seccion=edicion&id=2703829

http://cefire.edu.gva.es/mod/folder/view.php?id=247828, 

http://www.facebook.com/pages/Jornades-de-Neuroci%C3%A8ncia-i-Aprenentatge-Cefire-de-Vinar%C3%B2s-2013/348543381921959

Educación matemática y realismo

En un estudio francés que causó gran revuelo1, se plantearon a alumnos de primaria (7 y 8 años) preguntas del siguiente tipo: “Hay 26 ovejas y 10 cabras en un barco. ¿Qué edad tiene el capitán?” Al analizar las respuestas, sorprendentemente, un porcentaje muy alto del alumnado (80 %) dio una respuesta numérica a la pregunta formulada. Los resultados de evaluaciones internacionales, como el informe PISA, concluyen que el alumnado actual, en general, tiene dificultades para resolver problemas y, en especial, aquellos que están relacionados con situaciones cotidianas (problemas realistas).

La educación matemática actual se entiende como un conjunto de actividades que permiten la resolución de problemas con una finalidad práctica, alejada del aprendizaje tradicional de conceptos y procedimientos abstractos desligados del mundo real. En el siguiente artículo, analizamos la descontextualización de las matemáticas a través de un caso práctico. Comprobamos las dificultades del alumnado para resolver problemas aritméticos verbales y relacionarlos con situaciones prácticas cotidianas, y proponemos posibles soluciones para mejorar la situación.

Un caso práctico

Planteamos por escrito dos preguntas a 43 alumnos del bachillerato de ciencias (etapa preuniversitaria en España). Las dos estaban relacionadas con situaciones prácticas conocidas aunque para la primera se permitía una respuesta razonada, acompañada en caso necesario de los cálculos pertinentes, mientras que la segunda era la típica pregunta tipo test que requería la elección de una de las cuatro respuestas propuestas. Como lo que nos interesaba era el análisis estadístico de la muestra, se indicó a los alumnos que no era necesario dar a conocer su identidad. Los enunciados eran los siguientes:

1) Un atleta corre 1000 m en un tiempo de dos minutos y veinte  segundos. ¿Cuánto tardará en correr 3 km?

2) El recipiente de la figura se está llenando desde un grifo a una velocidad constante. Si la profundidad del agua es de 3,5 cm después de 10 segundos, ¿cuál será la profundidad después de 30 segundos?2 Elige una de las siguientes opciones:

a) 11,5 cm     b) 10,5 cm     c) 23,5 cm     d) Es imposible dar una respuesta precisa

En la primera pregunta, en el enunciado no se comenta que el atleta recorre las dos distancias a una velocidad constante. Por otra parte, es evidente que el ritmo del atleta dependerá de sus reservas energéticas y que en una carrera normal puede verse alterado por dichas reservas. Esto está relacionado con la incapacidad del organismo, en una prueba de esfuerzo máximo, para mantener el ritmo en un recorrido con una distancia suplementaria (en este caso 2 km). Los alumnos conocen esta situación dado que han participado en diferentes pruebas cronometradas en la asignatura de educación física. Respecto a la segunda pregunta, se observa que la forma del recipiente condiciona la existencia de una proporcionalidad directa entre la profundidad del agua y el tiempo transcurrido, es decir, cada 10 segundos sucesivos la profundidad del agua será menor que los 3,5 cm iniciales.

Las respuestas se clasificaron en tres tipos: erróneas, no realistas y realistas. La respuesta  errónea se consideró cuando el alumno no aportó una solución o dio una solución numérica que no correspondía a la predecible (7 minutos en la primera o 10,5 cm en la segunda), es decir, cometió un error de cálculo. La respuesta no realista se consideró aquella que correspondía al cálculo predecible y que no mostró, al menos en la primera pregunta, ningún comentario adicional. Y la respuesta se aceptó como realista si tuvo en cuenta consideraciones realistas o si añadía a la respuesta predecible algún comentario complementario sobre la complejidad de aplicar el enunciado a una situación real. En la segunda pregunta, que era tipo test, esto correspondía a la respuesta d). Los resultados obtenidos se muestran en los siguientes gráficos:

Como observamos en la gráfica de la pregunta 1, hay varios alumnos que cometen errores de cálculo (8, en porcentaje 19 % del total), la gran mayoría da la respuesta rutinaria (34, 79 % del total) y sólo un alumno (2 %) es capaz de aportar una respuesta realista. Estos resultados, independientemente del contexto particular elegido, concuerdan con otros llevados a cabo en diferentes países3, mayoritariamente con alumnos de primaria. Y muestran las dificultades generales de los alumnos para interpretar los enunciados aritméticos verbales relacionados con cuestiones cotidianas, dotarlos de significado e incorporar informaciones “realistas”. Les cuesta aplicar el proceso de modelización matemática, que hace referencia a la aplicación de las matemáticas en la resolución de problemas del mundo real.

En la pregunta 2, introducimos una información adicional en el apartado d) al presentar como opción  la imposibilidad de dar una respuesta precisa. Es evidente que este aviso indirecto hace que el número de respuestas realistas aumente bastante respecto a la anterior pregunta (12, 28 %). Las respuestas erróneas (6, 14 %) y las no realistas (25, 58 %) disminuyen consecuentemente. Estos resultados obtenidos en la pregunta 2 no concuerdan con algunos estudios en los que, aunque se incluía en el inicio de la prueba un aviso explícito sobre el carácter particular de las preguntas planteadas, no se obtenían mejoras sustanciales en favor del alumnado avisado4 (sí que se obtenían mejoras cuando los alumnos tenían que resolver los problemas en contextos experimentales más reales). Esto se puede justificar atendiendo a que la información que aporta la aparición de la respuesta realista, en la pregunta tipo test, resulta un aviso más explícito.

¿Por qué los alumnos no saben resolver problemas realistas?

Tradicionalmente, los problemas verbales han consistido en aplicar operaciones aritméticas sencillas y obtener resultados a partir de cálculos que han excluido el análisis crítico y la comprensión de la situación sin la reflexión adecuada. El entrenamiento continuado de los alumnos en la resolución de problemas que requieren planteamientos rutinarios, conlleva  que no estén preparados para afrontar la resolución de problemas aritméticos verbales que requieren conocimientos del mundo real, como hemos comprobado en el apartado anterior. Desde los primeros años en la infancia, la mayoría de problemas que aparecen en los libros de texto muestran enunciados que eluden la reflexión, favoreciendo la aplicación de procedimientos exclusivamente matemáticos, muchas veces están en contradicción con conocimientos cotidianos adquiridos por los alumnos, presentan respuestas numéricas únicas y eluden el análisis crítico de los resultados5. Tareas rutinarias que van en detrimento de la creatividad y la motivación.

Los estudios con profesores en formación6, demuestran que muchos de estos futuros profesores tienen tendencia a excluir conocimientos prácticos de los enunciados con más aplicaciones. Las creencias del docente sobre cómo se deben resolver los problemas se han arraigado con el paso del tiempo (la imitación es una potente forma de aprendizaje que se transmite de maestro a alumno) y condicionan la interacción con sus alumnos. Tradicionalmente, los alumnos asocian el conocimiento matemático a recordar fórmulas o algoritmos correctos que permitan responder la pregunta planteada por el maestro, que será el encargado de dar el veredicto final sobre la misma. Los nuevos tiempos requieren estrategias diferentes.

Posibles soluciones

A continuación reflexionamos sobre algunos factores que creemos son críticos para mejorar la resolución de problemas realistas:

Menos rutina

Es necesario aumentar la resolución de problemas no rutinarios y eliminar los cálculos que no se correspondan con la vida real. No todos los problemas requieren operaciones aritméticas básicas o conceptos y procedimientos aprendidos recientemente. La variedad en la elección de enunciados correspondientes a situaciones prácticas, que puedan resolverse sin utilizar procedimientos exclusivamente matemáticos, optimiza la motivación del alumno y puede resultar como antídoto eficaz ante los alumnos (nuestra experiencia nos dice que son muchos) que creen que las matemáticas escolares constituyen un artificio desconectado de la realidad.

Más cooperación

Resulta  imprescindible plantear estrategias en el aula que favorezcan el trabajo cooperativo y que permitan la discusión y el análisis colectivo. El trabajo en grupo ayuda a muchos alumnos a superar la desconfianza con la que afrontan las matemáticas, como resultado de creencias propias erróneas (“yo nunca he podido con las matemáticas”,etc.), y el temor a equivocarse7. Al observar el trabajo del grupo realizando una tarea, el docente debería aportar ideas cuando fueran necesarias, estimular la reflexión y la cooperación de todos los compañeros y, en concreto, la de aquellos con más dificultades. Como ya hemos comentado muchas veces, este tipo de estrategias nos lleva a entender el aprendizaje no como una adquisición, sino como una participación. Ni el profesor ni el libro de texto son infalibles.

Soluciones diversas

Los docentes deberíamos inculcar la idea de que no todos los problemas requieren soluciones exactas y únicas. En muchas ocasiones resulta adecuado hacer estimaciones o aproximaciones, todo en beneficio de razonamientos más complejos y en detrimento de análisis superficiales. El aprendizaje de las matemáticas no consiste en dar únicamente una respuesta a la pregunta formulada, sino en dotar de significado a las relaciones que han permitido obtener esa respuesta. Muchas veces damos una importancia excesiva a la memorización como estrategia de aprendizaje y ello resulta contraproducente, al inducir actitudes negativas de parte del alumnado frente a  la asignatura. El exagerado protagonismo que adquieren determinadas fórmulas o algoritmos coarta la búsqueda de soluciones creativas.

El alumno ha de aprender que no todos los datos numéricos que aparezcan en un enunciado se han de utilizar obligatoriamente y que hay que analizar los resultados obtenidos y compararlos con situaciones cotidianas. Asimismo, el docente ha de demostrar la existencia de distintas soluciones y métodos de resolución de los problemas, incentivando análisis alternativos y evitando imponer las soluciones. Como decía Francesco Tonucci, el profesor ha de dejar de garantizar la verdad para garantizar el método8.

Conclusiones finales

La aplicación de las estrategias planteadas requiere esfuerzo, y no sólo para el alumno sino también para el profesorado. Esta es la razón por la que muchas prácticas educativas no se apliquen; nos cuesta mucho cambiar. Pero, como comentábamos en un anterior artículo9, si podemos evitarlo, no reflexionamos sino que confiamos en nuestra memoria.

El enfoque multidisciplinar puede promover la aplicación de conocimientos no matemáticos a la resolución de problemas pero se necesita la aceptación del trabajo cooperativo en el colectivo. Y eso no siempre es posible.

Pero no nos engañemos, la verdadera utilidad de la resolución de problemas matemáticos es el aprendizaje de técnicas que puedan ser aplicadas en la resolución de problemas de la vida cotidiana. Y el objetivo de todo ser humano es bien conocido. Claudi Alsina lo resume de forma clarificadora: “Enseñar y aprender matemáticas puede y debe ser una experiencia feliz”10.

Jesús C. Guillén

1  Se analiza el caso en: Baruk, Stella, L’age du capitaine. De l’erreur en mathématiques, Seuil, 1985.

2  La segunda pregunta es la misma que realizó el grupo de investigación de Lieven Verschaffel a un grupo de futuros profesores: Verschaffel, L.; “Pre-service teachers conceptions and beliefs about the role of real-world knowledge in mathematical modelling of school word problems”, Learning and Instruction, 4.

3 Constituye un estudio de referencia: Verschaffel, L.; Greer, B.; DeCorte, E. (1994): “Realistic considerations in mathematical modeling of school arithmetic word problems”, Learning and instruction, 4.

4 Yoshida, H.; Verschaffel, L.; De Corte, E. (1997): “Realistic considerations in solving problematic word problems: do Japanese and Belgian children have the same difficulties?”, Learning and Instruction, 7.

5 En la conferencia del reconocido divulgador Claudi Alsina “Si Enrique VIII tuvo seis esposas, ¿cuántas tuvo Enrique IV” se muestra una gran cantidad de enunciados, extraídos de libros de texto, que corresponden a lo que él llama el timo de las realidades matemáticas:

http://www.youtube.com/watch?v=1yuSdFqNTSk

6 Ver nota 2.

7 Algunos de estos factores críticos en la enseñanza de las matemáticas ya se analizaban en un artículo anterior:

http://escuelaconcerebro.wordpress.com/2012/03/20/matematicas-y-neurociencia/

8 Tonucci, Francesco, Enseñar o aprender, Losada, 1996. La reseña del libro se encuentra en:

http://escuelaconcerebro.jimdo.com/rese%C3%B1as/ense%C3%B1ar-o-aprender-de-f-tonucci/

9 http://escuelaconcerebro.wordpress.com/2012/05/22/luchando-contra-la-propia-naturaleza/

10 Ver nota 5.

Para saber más:

Verschaffel, Lieven: “Los problemas aritméticos verbales y la modelización matemática”. En N. Planas (coord.), Teoría, crítica y práctica de la educación matemática (pags. 27-42), Graó, 2012.

Font, V.; Godino, J. D.; Goñi,  J. M. y Planas, N.: Matemáticas: Investigación, innovación y buenas prácticas, Graó, 2011.

Vicente, S.; Van Dooren, W. y Verschaffel, L. (2008): “Utilizar las matemáticas para resolver problemas reales”, Cultura y Educación, 20.

De Corte, E. y Verschaffel, L.(2003): “El desarrollo de habilidades de autorregulación en la solución de problemas matemáticos”, Pensamiento educativo, 32.

Matemáticas y Neurociencia

En 1992, Karen Wynn  realizó una serie de experimentos con bebés de cinco meses1. En uno de ellos, enseñó a los bebés un juguete que escondía tras una pantalla. A continuación, los bebés observaban cómo escondía un segundo juguete en el mismo lugar. Al cabo de unos segundos la investigadora apartaba la pantalla y cronometraba el tiempo que los bebés miraban. Observó que si al retirar la pantalla aparecía un juguete (resultado no posible, 1+1=1) los bebés miraban durante un período de tiempo mayor que cuando aparecían dos juguetes (resultado lógico 1+1=2). Este tipo de experimentos, que se han repetido en numerosas ocasiones, sugieren que los bebés poseen una capacidad innata para el procesamiento numérico. ¿Aprovecha la educación este sentido innato del cerebro para fomentar un aprendizaje adecuado de las matemáticas? En el siguiente artículo analizamos algunos estudios que, utilizando las técnicas modernas de visualización cerebral, nos permiten observar las regiones más activas en la resolución de problemas matemáticos, principalmente numéricos. A continuación, reflexionamos sobre algunos factores críticos en el proceso de enseñanza y aprendizaje de las matemáticas.

El cerebro matemático

Diversos experimentos muestran una gran activación de los lóbulos frontal y parietal en la resolución  de problemas. Stanislas Dehaene y sus colaboradores enseñaron una serie de cálculos a voluntarios bilingües en uno de sus idiomas2. Tras el entrenamiento, se les pedía que resolvieran ese tipo de cálculos de forma exacta o aproximada en las dos lenguas. Los investigadores observaron que la resolución de problemas exactos era más rápida en la lengua que utilizaron al aprender los cálculos, aunque utilizaran más la otra lengua en la vida cotidiana. Sin embargo, en los cálculos aproximados (se les pedía a los voluntarios que hicieran estimaciones) no se apreciaban diferencias significativas. En los cálculos exactos se observaba una mayor activación en las áreas del cerebro involucradas en el lenguaje, mientras que en los cálculos aproximados se activaba más el lóbulo parietal de los dos hemisferios.

En las imágenes, se muestra en azul las regiones activadas en el cálculo  exacto y en amarillo las zonas activadas en el cálculo aproximado. Se observa un predominio de la activación de la corteza prefrontal izquierda (azul) y de la parte derecha del lóbulo parietal (amarillo).2

.

Análisis posteriores sugieren que la información numérica puede ser procesada en el cerebro mediante tres sistemas diferentes, cada uno de ellos asociado con tres regiones del lóbulo parietal3:

1. Sistema verbal en el que los números se representan mediante palabras. Por ejemplo, cuarenta y tres. Se activa el giro angular izquierdo que interviene en los cálculos exactos.

2. Sistema visual en el que los números se representan según una asociación de números arábigos conocidos. Por ejemplo, 43. Se activa un sistema superior posterior parietal relacionado con la atención.

3. Sistema cuantitativo no verbal en el que podemos establecer los valores de los números. Por ejemplo, entendemos el significado del número cuarenta y tres generado por cuatro decenas y tres unidades. En este sistema participa la región más activa e importante en la resolución de problemas numéricos, el segmento horizontal del surco intraparietal (HIPS). Su activación aumenta más cuando se hace una estimación de un resultado aproximado que no cuando realizamos un cálculo exacto. En la aproximación, aunque se activan los dos hemisferios cerebrales, existe una cierta preferencia por el derecho.

Representación tridimensional de las tres regiones del lóbulo parietal que intervienen en los procesamientos numéricos (en verde el giro angular izquierdo y en rojo el surco intraparietal)3 El lóbulo parietal es muy importante en la vida cotidiana porque facilita la representación espacial.

.

Analicemos alguna operación concreta. En las multiplicaciones (sabemos que los niños aprenden de memoria las tablas de multiplicar) se activa el giro angular izquierdo que pertenece al sistema verbal, es decir, son codificadas verbalmente. Sin embargo, al hacer comparaciones o estimaciones se activa el surco intraparietal  porque no necesitamos convertir los números en palabras, es decir, son independientes del lenguaje. El hemisferio izquierdo calcula (recordemos que en la mayoría de personas, al ser diestras, el lenguaje reside en el hemisferio izquierdo) mientras que el hemisferio derecho hace estimaciones.

En relación a la función que desempeña el lóbulo parietal en la representación espacial, hemos escuchado a matemáticos explicar la utilización de imágenes mentales en la resolución repentina de problemas. Esto guarda relación directa con el concepto de “insight” (ver artículo anterior /insight/) que hace referencia a la capacidad de comprender la estructura interna de un problema que, muchas veces, aparece de forma imprevisible. La comprensión de los mecanismos inconscientes que facilitan este tipo de resoluciones tendrá enormes implicaciones en la forma de enseñar, aunque lo que ya conocemos es que para que se produzca el “insight” se requiere un estado de relajación cerebral. Una razón más para facilitar los estados exentos de estrés en los entornos educativos.

Algunos factores críticos en la enseñanza de las matemáticas

1. Creencias previas y factores emocionales

Comentarios típicos como “nunca entendí las matemáticas” o ”no se me dan bien las matemáticas” se han asentado, progresivamente, en la mente de muchos alumnos y recalcan la importancia que tienen las creencias previas y la inteligencia emocional en el aprendizaje.

Fomentar un clima educativo que favorezca las emociones positivas (facilitando factores como el optimismo o la resiliencia), en detrimento de las negativas, es tan importante o más que la aportación de contenidos puramente académicos.

La pedagogía utilizada en la fase inicial del aprendizaje de las matemáticas incide directamente en la motivación del alumno. El rechazo inicial provocado en muchos niños guarda una relación directa, en numerosas ocasiones, con una enseñanza basada en infinidad de cálculos mecánicos que coartan el proceso intelectual creativo del alumno y en una representación de la terminología incomprensible para él.

Ejemplo: Consideremos la resta 8 – 3 = 5. Los adultos podemos asimilar esa situación a una gran variedad de casos prácticos, por ejemplo, si en un recorrido de ocho kilómetros hemos caminado tres nos faltarán otros cinco; si una temperatura inicial de ocho grados desciende tres, la temperatura final será de cinco grados,…El día que se introducen los números negativos y el profesor escribe 3 – 8 = -5, el niño puede tener dificultades para entender el significado del cálculo. En este caso, la temperatura  le puede aportar una imagen intuitiva más eficaz que la distancia (- 5 grados facilita el aprendizaje del concepto, en lugar de -5 kilómetros).

2. El papel del profesor

Ya hemos comentado que diferentes estudios parecen demostrar que los seres humanos nacemos con un sentido numérico innato. Según Dehaene4 y Butterworth5, dos de los grandes expertos mundiales en el estudio de las matemáticas y el cerebro, la escuela obstaculiza este desarrollo facilitado, inicialmente, por factores genéticos. Dehaene  cree que la construcción de los conceptos abstractos ha de iniciarse con la formulación de ejemplos concretos, con la finalidad de estimular el desarrollo del razonamiento intuitivo del niño. Además, la interacción con la mente del alumno requiere la manipulación de materiales y actividades lúdicas.

Ejemplo: La utilización de algunos juegos de mesa puede ser de gran utilidad. En concreto, se ha demostrado que el aprendizaje del ajedrez puede mejorar el cálculo mental, el razonamiento intuitivo, la memoria, la capacidad de abstracción o la concentración.

 La recomendación de facilitar el desarrollo intuitivo guarda relación directa con el concepto del “insight” en el que la intuición y los mecanismos de resolución inconscientes desempeñan un papel fundamental (ver artículo anterior, educacion-del-inconsciente). El excesivo énfasis en conceptos abstractos, sin utilidad práctica aparente, y la memorización rutinaria de algoritmos perjudica la evolución y motivación del alumno.

Ejemplo: Si pedimos a niños de seis y diez años de edad que nos calculen la sencilla operación  6 + 4 – 4  podemos comprobar que, a menudo, los niños de seis años responden 6 sin necesidad de realizar cálculo alguno. Sin embargo los niños de diez años, que son más expertos, pueden realizar el cálculo en su hoja (6 + 4 = 10 y luego 10 – 4 = 6).

 Por otra parte, los docentes hemos de intentar presentar contenidos abiertos que faciliten el establecimiento de relaciones y la generación de ideas; así como guiar el proceso de evolución del alumno poniendo a su disposición mecanismos de autocorrección que les permitan ser conscientes de sus razonamientos acertados o no. “¿Qué piensas sobre…?” Los docentes deberíamos facilitar procesos de resolución alternativos que fomenten los razonamientos creativos.

“¿Y esto para que sirve? ” Uno de los grandes problemas de la enseñanza de las  matemáticas (podemos generalizar a todas las materias) está asociado a la impartición de contenidos académicos exentos de toda utilidad y aplicación práctica.

Ejemplo: La aceleración de un coche se puede entender como la derivada o variación de una magnitud conocida como la velocidad respecto a otra magnitud que es el tiempo. La aceleración puede ser positiva cuando se da un aumento de la velocidad, negativa si la velocidad disminuye o nula si la velocidad es constante, es decir, no varía. Un ejemplo cercano como este nos puede servir para introducir el apartado de las derivadas de funciones, en lugar de comenzar con una serie de reglas mecánicas que el alumno puede entender como arbitrarias.

Una simple explicación puede facilitar el proceso de atención. Además, sabemos que el funcionamiento de la memoria de trabajo está limitada por la atención que prestamos a los objetos.

Ejemplo: En dos ecuaciones formalmente idénticas como las siguientes, en la segunda se cometen más errores porque aumenta la carga de la memoria de trabajo en las fracciones6:

x + 6 = 9 → x = 9 + 6

x + 6/5 = 9/4 → x = 9/4 + 6/5

Un ejemplo que demuestra la importancia del análisis de los errores cometidos.

Conclusiones finales

Hemos constatado que la localización del conocimiento matemático en el cerebro es complicada porque incluye diferentes circuitos que pueden actuar de forma parcialmente autónoma.  Lo cierto es que los diferentes campos de estudio de las matemáticas requieren enfoques dependientes. Por ejemplo, existe una conexión entre aritmética y geometría (pensemos en la visualización espacial de los números utilizados en las operaciones aritméticas básicas). La utilización de diferentes áreas cerebrales en el proceso de aprendizaje diversifica las estrategias pedagógicas aunque, a pesar de la dificultad, lo que parece claro es que el proceso de enseñanza y aprendizaje de las matemáticas cambiará y deberá considerar la base empírica que aportan las investigaciones en neurociencia. La multimodalidad propuesta por Gallese y Lakoff 7 representa una nueva concepción del pensamiento que puede acaparar en el futuro un gran protagonismo. Según esta propuesta, el conocimiento matemático (o cualquier otro) está ligado a nuestro sistema sensoriomotor,  por lo que no sólo pensamos con la ayuda del lenguaje y de los símbolos sino también a través de los sentidos, es decir, las impresiones sensoriales constituyen el carácter multimodal de los conceptos. Según esta propuesta, la enseñanza tradicional del lápiz y papel no permite una conexión duradera con la experiencia sensorial vivida por los alumnos en los primeros años escolares.

El gran problema con el que nos encontramos los docentes es que los investigadores realizan sus experimentos con una metodología diferente a la utilizada en el entorno académico, lo que dificulta su aplicación en el aula. Ahora bien, en algunos casos, tenemos a nuestra  disposición importantes recursos educativos. Un caso concreto es el de la discalculia, que podemos encontrar en niños motivados e inteligentes pero que seguramente padecen alguna anomalía cerebral, normalmente en la región izquierda del lóbulo parietal. El estudio de estas personas demuestra la existencia de problemas, dejando aparte los aritméticos, relacionados con la orientación espacial, el control de sus propias acciones y sobre la representación de su cuerpo, especialmente de los dedos. Esto nos recuerda la forma de contar con los dedos de los niños, el control de los mismos y los gestos que hacen que conllevan determinadas posiciones corporales. Si la representación de los dedos no llega a desarrollarse normalmente, se pueden originar dificultades en el desarrollo de las habilidades numéricas. La detección de estas anomalías nos permite aplicar mecanismos compensatorios que faciliten una comprensión de las operaciones básicas o de las reglas explícitas más lenta pero segura. Pero para ello, hemos de asumir que la inteligencia no es un concepto unitario y que el aprendizaje en cada alumno es diferente. Sea como fuere, seguimos buscando recursos para diseñar la práctica docente con soportes empíricos y los principios neurobiológicos de la función cerebral guiarán el futuro.

Jesús C. Guillén

1 Wynn, K. “Addition and subtraction by human infants”. Nature, 358, 1992.

2 Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivikin S. “Sources of mathematical thinking: behavioral and brain-imaging evidence”. Science  284, 1999.

3 Dehaene S, Piazza M, Pinel P, Cohen L.”Three parietal circuits for number processing”. Cognitive Neuropsychology 20, 2003.

4 Dehaene, S. The number sense. how the mind create mathematics. Oxford University Press, 1997.

5 Butterworth, B. The mathematical brain. MacMillan, 1999.

6 Radford L, André M, “Cerebro, cognición y matemáticas”, Revista Latinoamericana de Investigación en Matemática Educativa 12, 2009.

7 Gallese V, Lakoff G. ”The brain’s concepts: the role of the sensory-motor system in conceptual knowledge”. Cognitive Neuropsychology 22, 2005.

Para saber más:

Blakemore S., Frith U. Cómo aprende el cerebro: las claves para la educación. Ariel, 2011

Alonso D., Fuentes L. “Mecanismos cerebrales del pensamiento matemático”. Revista de Neurología 33, 2001.

Ballestra M, Martínez J, Argibay P. “Matemáticas y cerebro”. Revista del Hospital Italiano de Buenos Aires 26, 2006.

Fernández J. “Neurociencia y enseñanza de la matemática”, Revista Iberoamericana de Educación 51, 2010.

http://escuelaconcerebro.wordpress.com/2012/10/21/educacion-matematica-y-realismo/

Categorías:Neurodidáctica Etiquetas: , ,
Seguir

Recibe cada nueva publicación en tu buzón de correo electrónico.

Únete a otros 6.870 seguidores